nLab number field

Redirected from "number fields".
Contents

Context

Algebra

Arithmetic geometry

Contents

Definition

A number field is a finite field extension of the field of rational numbers, \mathbb{Q}.

In other words, a number field is a field kk of characteristic zero such that under the field homomorphism i:ki: \mathbb{Q} \hookrightarrow k, the field kk is a finite-dimensional vector space over \mathbb{Q} with respect to the scalar multiplication action of \mathbb{Q}

ki1kkmultk\mathbb{Q} \otimes k \stackrel{i \otimes 1}{\to} k \otimes k \stackrel{mult}{\to} k

on the underlying additive group of kk.

Examples

Counterexamples:

Applications

Number fields are the basic objects of study in algebraic number theory. For example, one is typically interested in the arithmetic structure of kk, including for example the structure of the ring of algebraic integers 𝒪 k\mathcal{O}_k in kk, the decomposition of primes in \mathbb{Z} in terms of prime ideals in 𝒪 k\mathcal{O}_k, the structure of the unit group of 𝒪 k\mathcal{O}_k, the structure of the ideal class group, the detailed study of the zeta function of kk, and much more.

Properties

As global fields

Number fields kk are examples of global fields, in fact they are the global fields of characteristic zero. They are often studied in terms of how they embed in their rings of adeles 𝔸 k\mathbb{A}_k, which are built from the local completions of kk.

Class number formula

Given a number field KK, the Dedekind zeta function ζ K\zeta_K of KK has a simple pole at s=1s = 1. The class number formula says that its residue there is proportional the product of the regulator with the class number of KK

lims1(s1)ζ K(s)ClassNumber KRegulator K. \underset{s\to 1}{\lim} (s-1) \zeta_K(s) \propto ClassNumber_K \cdot Regulator_K \,.

Function field analogy

function field analogy

number fields (“function fields of curves over F1”)function fields of curves over finite fields 𝔽 q\mathbb{F}_q (arithmetic curves)Riemann surfaces/complex curves
affine and projective line
\mathbb{Z} (integers)𝔽 q[z]\mathbb{F}_q[z] (polynomials, polynomial algebra on affine line 𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q})𝒪 \mathcal{O}_{\mathbb{C}} (holomorphic functions on complex plane)
\mathbb{Q} (rational numbers)𝔽 q(z)\mathbb{F}_q(z) (rational fractions/rational function on affine line 𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q})meromorphic functions on complex plane
pp (prime number/non-archimedean place)x𝔽 px \in \mathbb{F}_p, where zx𝔽 q[z]z - x \in \mathbb{F}_q[z] is the irreducible monic polynomial of degree onexx \in \mathbb{C}, where zx𝒪 z - x \in \mathcal{O}_{\mathbb{C}} is the function which subtracts the complex number xx from the variable zz
\infty (place at infinity)\infty
Spec()Spec(\mathbb{Z}) (Spec(Z))𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q} (affine line)complex plane
Spec()place Spec(\mathbb{Z}) \cup place_{\infty} 𝔽 q\mathbb{P}_{\mathbb{F}_q} (projective line)Riemann sphere
p() p()p\partial_p \coloneqq \frac{(-)^p - (-)}{p} (Fermat quotient)z\frac{\partial}{\partial z} (coordinate derivation)
genus of the rational numbers = 0genus of the Riemann sphere = 0
formal neighbourhoods
/(p n)\mathbb{Z}/(p^n \mathbb{Z}) (prime power local ring)𝔽 q[z]/((zx) n𝔽 q[z])\mathbb{F}_q [z]/((z-x)^n \mathbb{F}_q [z]) (nn-th order univariate local Artinian 𝔽 q \mathbb{F}_q -algebra)[z]/((zx) n[z])\mathbb{C}[z]/((z-x)^n \mathbb{C}[z]) (nn-th order univariate Weil \mathbb{C} -algebra)
p\mathbb{Z}_p (p-adic integers)𝔽 q[[zx]]\mathbb{F}_q[ [ z -x ] ] (power series around xx)[[zx]]\mathbb{C}[ [z-x] ] (holomorphic functions on formal disk around xx)
Spf( p)×Spec()XSpf(\mathbb{Z}_p)\underset{Spec(\mathbb{Z})}{\times} X (“pp-arithmetic jet space” of XX at pp)formal disks in XX
p\mathbb{Q}_p (p-adic numbers)𝔽 q((zx))\mathbb{F}_q((z-x)) (Laurent series around xx)((zx))\mathbb{C}((z-x)) (holomorphic functions on punctured formal disk around xx)
𝔸 = pplace p\mathbb{A}_{\mathbb{Q}} = \underset{p\; place}{\prod^\prime}\mathbb{Q}_p (ring of adeles)𝔸 𝔽 q((t))\mathbb{A}_{\mathbb{F}_q((t))} ( adeles of function field ) x((zx))\underset{x \in \mathbb{C}}{\prod^\prime} \mathbb{C}((z-x)) (restricted product of holomorphic functions on all punctured formal disks, finitely of which do not extend to the unpunctured disks)
𝕀 =GL 1(𝔸 )\mathbb{I}_{\mathbb{Q}} = GL_1(\mathbb{A}_{\mathbb{Q}}) (group of ideles)𝕀 𝔽 q((t))\mathbb{I}_{\mathbb{F}_q((t))} ( ideles of function field ) xGL 1(((zx)))\underset{x \in \mathbb{C}}{\prod^\prime} GL_1(\mathbb{C}((z-x)))
theta functions
Jacobi theta function
zeta functions
Riemann zeta functionGoss zeta function
branched covering curves
KK a number field (K\mathbb{Q} \hookrightarrow K a possibly ramified finite dimensional field extension)KK a function field of an algebraic curve Σ\Sigma over 𝔽 p\mathbb{F}_pK ΣK_\Sigma (sheaf of rational functions on complex curve Σ\Sigma)
𝒪 K\mathcal{O}_K (ring of integers)𝒪 Σ\mathcal{O}_{\Sigma} (structure sheaf)
Spec an(𝒪 K)Spec()Spec_{an}(\mathcal{O}_K) \to Spec(\mathbb{Z}) (spectrum with archimedean places)Σ\Sigma (arithmetic curve)ΣP 1\Sigma \to \mathbb{C}P^1 (complex curve being branched cover of Riemann sphere)
() pΦ()p\frac{(-)^p - \Phi(-)}{p} (lift of Frobenius morphism/Lambda-ring structure)z\frac{\partial}{\partial z}
genus of a number fieldgenus of an algebraic curvegenus of a surface
formal neighbourhoods
vv prime ideal in ring of integers 𝒪 K\mathcal{O}_KxΣx \in \SigmaxΣx \in \Sigma
K vK_v (formal completion at vv)((z x))\mathbb{C}((z_x)) (function algebra on punctured formal disk around xx)
𝒪 K v\mathcal{O}_{K_v} (ring of integers of formal completion)[[z x]]\mathbb{C}[ [ z_x ] ] (function algebra on formal disk around xx)
𝔸 K\mathbb{A}_K (ring of adeles) xΣ ((z x))\prod^\prime_{x\in \Sigma} \mathbb{C}((z_x)) (restricted product of function rings on all punctured formal disks around all points in Σ\Sigma)
𝒪\mathcal{O} xΣ[[z x]]\prod_{x\in \Sigma} \mathbb{C}[ [z_x] ] (function ring on all formal disks around all points in Σ\Sigma)
𝕀 K=GL 1(𝔸 K)\mathbb{I}_K = GL_1(\mathbb{A}_K) (group of ideles) xΣ GL 1(((z x)))\prod^\prime_{x\in \Sigma} GL_1(\mathbb{C}((z_x)))
Galois theory
Galois groupπ 1(Σ)\pi_1(\Sigma) fundamental group
Galois representationflat connection (“local system”) on Σ\Sigma
class field theory
class field theorygeometric class field theory
Hilbert reciprocity lawArtin reciprocity lawWeil reciprocity law
GL 1(K)\GL 1(𝔸 K)GL_1(K)\backslash GL_1(\mathbb{A}_K) (idele class group)
GL 1(K)\GL 1(𝔸 K)/GL 1(𝒪)GL_1(K)\backslash GL_1(\mathbb{A}_K)/GL_1(\mathcal{O})Bun GL 1(Σ)Bun_{GL_1}(\Sigma) (moduli stack of line bundles, by Weil uniformization theorem)
non-abelian class field theory and automorphy
number field Langlands correspondencefunction field Langlands correspondencegeometric Langlands correspondence
GL n(K)\GL n(𝔸 K)//GL n(𝒪)GL_n(K) \backslash GL_n(\mathbb{A}_K)//GL_n(\mathcal{O}) (constant sheaves on this stack form unramified automorphic representations)Bun GL n()(Σ)Bun_{GL_n(\mathbb{C})}(\Sigma) (moduli stack of bundles on the curve Σ\Sigma, by Weil uniformization theorem)
Tamagawa-Weil for number fieldsTamagawa-Weil for function fields
theta functions
Hecke theta functionfunctional determinant line bundle of Dirac operator/chiral Laplace operator on Σ\Sigma
zeta functions
Dedekind zeta functionWeil zeta functionzeta function of a Riemann surface/of the Laplace operator on Σ\Sigma
higher dimensional spaces
zeta functionsHasse-Weil zeta function

Literature

Last revised on August 31, 2021 at 16:49:43. See the history of this page for a list of all contributions to it.