synthetic differential geometry, deformation theory
infinitesimally thickened point
synthetic differential geometry
Introductions
from point-set topology to differentiable manifolds
geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry
Differentials
Tangency
The magic algebraic facts
Theorems
Axiomatics
(shape modality $\dashv$ flat modality $\dashv$ sharp modality)
$(ʃ \dashv \flat \dashv \sharp )$
dR-shape modality $\dashv$ dR-flat modality
$ʃ_{dR} \dashv \flat_{dR}$
(reduction modality $\dashv$ infinitesimal shape modality $\dashv$ infinitesimal flat modality)
$(\Re \dashv \Im \dashv \&)$
fermionic modality $\dashv$ bosonic modality $\dashv$ rheonomy modality
$(\rightrightarrows \dashv \rightsquigarrow \dashv Rh)$
Models
Models for Smooth Infinitesimal Analysis
smooth algebra ($C^\infty$-ring)
differential equations, variational calculus
Chern-Weil theory, ∞-Chern-Weil theory
Cartan geometry (super, higher)
In a context of synthetic differential geometry or differential cohesion, then given any space $X$ and a point $x \colon \ast \to X$, then the formal disk in $X$ at $x$ is just the infinitesimally thickened point which is the formal neighbourhood of that point. If there is a concept of dimension for $X$, then the dimension of that formal disk is the dimension of $X$ at that point.
Dually in terms of function algebras, in the typical models formal disks are the formal spectra of formal power series algebras. The formal spectra of the Laurent series algebras are instead the “punctured formal disks”, hence formal disks with their unique global point removed.
More concretely, if $S$ is any infinity-cohesive site of “differentiable spaces” (such as for instance complex analytic manifolds) and $S_{synthdiff}$ is the corresponding site of infinitesimal thickenings (for instance complex analytic smooth loci of the form the product of a complex manifold with an infinitesimally thickened point), then we have relative cohesion of $Sh_\infty(S_{synthdiff})$ over $Sh_\infty(InfPoints)$ (see at synthetic differential ∞-groupoid) and for any space $X$ then the flat modality takes it to its union $\flat X$ of all formal disks around all global points of $X$.
number fields (“function fields of curves over F1”) | function fields of curves over finite fields $\mathbb{F}_q$ (arithmetic curves) | Riemann surfaces/complex curves | |
---|---|---|---|
affine and projective line | |||
$\mathbb{Z}$ (integers) | $\mathbb{F}_q[z]$ (polynomials, function algebra on affine line $\mathbb{A}^1_{\mathbb{F}_q}$) | $\mathcal{O}_{\mathbb{C}}$ (holomorphic functions on complex plane) | |
$\mathbb{Q}$ (rational numbers) | $\mathbb{F}_q(z)$ (rational functions) | meromorphic functions on complex plane | |
$p$ (prime number/non-archimedean place) | $x \in \mathbb{F}_p$ | $x \in \mathbb{C}$ | |
$\infty$ (place at infinity) | $\infty$ | ||
$Spec(\mathbb{Z})$ (Spec(Z)) | $\mathbb{A}^1_{\mathbb{F}_q}$ (affine line) | complex plane | |
$Spec(\mathbb{Z}) \cup place_{\infty}$ | $\mathbb{P}_{\mathbb{F}_q}$ (projective line) | Riemann sphere | |
$\partial_p \coloneqq \frac{(-)^p - (-)}{p}$ (Fermat quotient) | $\frac{\partial}{\partial z}$ (coordinate derivation) | “ | |
genus of the rational numbers = 0 | genus of the Riemann sphere = 0 | ||
formal neighbourhoods | |||
$\mathbb{Z}_p$ (p-adic integers) | $\mathbb{F}_q[ [ t -x ] ]$ (power series around $x$) | $\mathbb{C}[ [z-x] ]$ (holomorphic functions on formal disk around $x$) | |
$Spf(\mathbb{Z}_p)\underset{Spec(\mathbb{Z})}{\times} X$ (“$p$-arithmetic jet space” of $X$ at $p$) | formal disks in $X$ | ||
$\mathbb{Q}_p$ (p-adic numbers) | $\mathbb{F}_q((z-x))$ (Laurent series around $x$) | $\mathbb{C}((z-x))$ (holomorphic functions on punctured formal disk around $x$) | |
$\mathbb{A}_{\mathbb{Q}} = \underset{p\; place}{\prod^\prime}\mathbb{Q}_p$ (ring of adeles) | $\mathbb{A}_{\mathbb{F}_q((t))}$ ( adeles of function field ) | $\underset{x \in \mathbb{C}}{\prod^\prime} \mathbb{C}((z-x))$ (restricted product of holomorphic functions on all punctured formal disks, finitely of which do not extend to the unpunctured disks) | |
$\mathbb{I}_{\mathbb{Q}} = GL_1(\mathbb{A}_{\mathbb{Q}})$ (group of ideles) | $\mathbb{I}_{\mathbb{F}_q((t))}$ ( ideles of function field ) | $\underset{x \in \mathbb{C}}{\prod^\prime} GL_1(\mathbb{C}((z-x)))$ | |
theta functions | |||
Jacobi theta function | |||
zeta functions | |||
Riemann zeta function | Goss zeta function | ||
branched covering curves | |||
$K$ a number field ($\mathbb{Q} \hookrightarrow K$ a possibly ramified finite dimensional field extension) | $K$ a function field of an algebraic curve $\Sigma$ over $\mathbb{F}_p$ | $K_\Sigma$ (sheaf of rational functions on complex curve $\Sigma$) | |
$\mathcal{O}_K$ (ring of integers) | $\mathcal{O}_{\Sigma}$ (structure sheaf) | ||
$Spec_{an}(\mathcal{O}_K) \to Spec(\mathbb{Z})$ (spectrum with archimedean places) | $\Sigma$ (arithmetic curve) | $\Sigma \to \mathbb{C}P^1$ (complex curve being branched cover of Riemann sphere) | |
$\frac{(-)^p - \Phi(-)}{p}$ (lift of Frobenius morphism/Lambda-ring structure) | $\frac{\partial}{\partial z}$ | “ | |
genus of a number field | genus of an algebraic curve | genus of a surface | |
formal neighbourhoods | |||
$v$ prime ideal in ring of integers $\mathcal{O}_K$ | $x \in \Sigma$ | $x \in \Sigma$ | |
$K_v$ (formal completion at $v$) | $\mathbb{C}((z_x))$ (function algebra on punctured formal disk around $x$) | ||
$\mathcal{O}_{K_v}$ (ring of integers of formal completion) | $\mathbb{C}[ [ z_x ] ]$ (function algebra on formal disk around $x$) | ||
$\mathbb{A}_K$ (ring of adeles) | $\prod^\prime_{x\in \Sigma} \mathbb{C}((z_x))$ (restricted product of function rings on all punctured formal disks around all points in $\Sigma$) | ||
$\mathcal{O}$ | $\prod_{x\in \Sigma} \mathbb{C}[ [z_x] ]$ (function ring on all formal disks around all points in $\Sigma$) | ||
$\mathbb{I}_K = GL_1(\mathbb{A}_K)$ (group of ideles) | $\prod^\prime_{x\in \Sigma} GL_1(\mathbb{C}((z_x)))$ | ||
Galois theory | |||
Galois group | “ | $\pi_1(\Sigma)$ fundamental group | |
Galois representation | “ | flat connection (“local system”) on $\Sigma$ | |
class field theory | |||
class field theory | “ | geometric class field theory | |
Hilbert reciprocity law | Artin reciprocity law | Weil reciprocity law | |
$GL_1(K)\backslash GL_1(\mathbb{A}_K)$ (idele class group) | “ | ||
$GL_1(K)\backslash GL_1(\mathbb{A}_K)/GL_1(\mathcal{O})$ | “ | $Bun_{GL_1}(\Sigma)$ (moduli stack of line bundles, by Weil uniformization theorem) | |
non-abelian class field theory and automorphy | |||
number field Langlands correspondence | function field Langlands correspondence | geometric Langlands correspondence | |
$GL_n(K) \backslash GL_n(\mathbb{A}_K)//GL_n(\mathcal{O})$ (constant sheaves on this stack form unramified automorphic representations) | “ | $Bun_{GL_n(\mathbb{C})}(\Sigma)$ (moduli stack of bundles on the curve $\Sigma$, by Weil uniformization theorem) | |
Tamagawa-Weil for number fields | Tamagawa-Weil for function fields | ||
theta functions | |||
Hecke theta function | functional determinant line bundle of Dirac operator/chiral Laplace operator on $\Sigma$ | ||
zeta functions | |||
Dedekind zeta function | Weil zeta function | zeta function of a Riemann surface/of the Laplace operator on $\Sigma$ | |
higher dimensional spaces | |||
zeta functions | Hasse-Weil zeta function |
Discussion in differential cohesion is in
and formalization in homotopy type theory is in
Felix Wellen, Formalizing Cartan Geometry in Modal Homotopy Type Theory, PhD Thesis, 2017
Felix Wellen, Cartan Geometry in Modal Homotopy Type Theory (arXiv:1806.05966)
Last revised on June 18, 2018 at 06:45:39. See the history of this page for a list of all contributions to it.