nLab
tensor triangulated category

Context

Homological algebra

homological algebra

(also nonabelian homological algebra)

Introduction

Context

Basic definitions

Stable homotopy theory notions

Constructions

Lemmas

diagram chasing

Homology theories

Theorems

Stable homotopy theory

Contents

Idea

A tensor triangulated category is a category that carries the structure of a symmetric monoidal category and of a triangulated category in a compatible way.

Definition

Definition

A tensor triangulated category is a category HoHo equipped with

  1. the structure of a symmetric monoidal category (Ho,,1,τ)(Ho, \otimes, 1, \tau) (“tensor category”);

  2. the structure of a triangulated category (Ho,Σ,CofSeq)(Ho, \Sigma, CofSeq)

  3. for all objects X,YHoX,Y\in Ho natural isomorphisms

    e X,Y:(ΣX)YΣ(XY) e_{X,Y} \;\colon\; (\Sigma X) \otimes Y \overset{\simeq}{\longrightarrow} \Sigma(X \otimes Y)

such that

  1. (tensor product is additive) for each object VV the functor V()()VV \otimes (-) \simeq (-) \otimes V is an additive functor;

  2. (tensor product is exact) for each object VHoV \in Ho the functor V()()VV \otimes (-) \simeq (-)\otimes V preserves distinguished triangles in that for

    XfYgY/XhΣX X \overset{f}{\longrightarrow} Y \overset{g}{\longrightarrow} Y/X \overset{h}{\longrightarrow} \Sigma X

    in CofSeqCofSeq, then also

    VXid VfVYid VgVY/Xid VhV(ΣX)Σ(VX) V \otimes X \overset{id_V \otimes f}{\longrightarrow} V\otimes Y \overset{id_V \otimes g}{\longrightarrow} V \otimes Y/X \overset{id_V \otimes h}{\longrightarrow} V \otimes (\Sigma X) \simeq \Sigma(V \otimes X)

    in CofSeqCofSeq, where the equivalence at the end is e X,Vτ V,ΣXe_{X,V}\circ \tau_{V, \Sigma X}.

Jointly this says that the isomorphisms ee give V()V \otimes (-) the structure of a triangulated functor, for all VV.

(Balmer 05, def. 1.1)

In addition one may ask that

  1. (coherence) for all X,Y,ZHoX, Y, Z \in Ho the following diagram commutes

    (Σ(X)Y)Z e X,Yid (Σ(XY))Z e XY,Z Σ((XY)Z) α ΣX,Y,Z Σα X,Y,Z Σ(X)(YZ) e X,YZ Σ(X(YZ)) \array{ ( \Sigma(X) \otimes Y) \otimes Z &\overset{e_{X,Y} \otimes id}{\longrightarrow}& (\Sigma (X \otimes Y)) \otimes Z &\overset{e_{X \otimes Y, Z}}{\longrightarrow}& \Sigma( (X \otimes Y) \otimes Z ) \\ {}^{\mathllap{\alpha_{\Sigma X, Y, Z}}}\downarrow && && \downarrow^{\mathrlap{\Sigma \alpha_{X,Y,Z}}} \\ \Sigma (X) \otimes (Y \otimes Z) && \underset{e_{X, Y \otimes Z }}{\longrightarrow} && \Sigma( X \otimes (Y \otimes Z) ) }

    is in CofSeqCofSeq, where α\alpha is the associator of (Ho,,1)(Ho, \otimes, 1).

  2. (graded commutativity) for all n 1,n 2n_1, n_2 \in \mathbb{Z} the following diagram commutes

    (Σ n 11)(Σ n 21) Σ n 1+n 21 τ Σ n 11,Σ n 21 (1) n 1n 2 (Σ n 21)(Σ n 11) Σ n 1+n 21, \array{ (\Sigma^{n_1} 1) \otimes (\Sigma^{n_2} 1) &\overset{\simeq}{\longrightarrow}& \Sigma^{n_1 + n_2} 1 \\ {}^{\mathllap{\tau_{\Sigma^{n_1}1, \Sigma^{n_2}1}}}\downarrow && \downarrow^{\mathrlap{(-1)^{n_1 \cdot n_2}}} \\ (\Sigma^{n_2} 1) \otimes (\Sigma^{n_1} 1) &\underset{\simeq}{\longrightarrow}& \Sigma^{n_1 + n_2} 1 } \,,

    where the horizontal isomorphisms are composites of the e ,e_{\cdot,\cdot} and the braidings.

This is (Hovey-Palmieri-Strickland 97, def. A.2.1) except for statements concerning possible further closed monoidal category structure. There this is called “symmetric monoidal structure compatible with the triangulation”.

Examples

References

Review is for instance in

  • Greg Stevenson, Tensor actions and locally complete intersection PhD thesis 2011 (pdf)

Last revised on May 17, 2017 at 23:03:43. See the history of this page for a list of all contributions to it.