The homotopy groups of spheres …
The stable homotopy groups of the sphere spectrum …
The first stable homotopy groups of the sphere spectrum $\mathbb{S}$
$k =$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | $\cdots$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$\pi_k(\mathbb{S}) =$ | $\mathbb{Z}$ | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}_{24}$ | $0$ | $0$ | $\mathbb{Z}_2$ | $\mathbb{Z}_{240}$ | $(\mathbb{Z}_2)^2$ | $(\mathbb{Z}_2)^3$ | $\mathbb{Z}_6$ | $\mathbb{Z}_{504}$ | $0$ | $\mathbb{Z}_3$ | $(\mathbb{Z}_2)^2$ | $\mathbb{Z}_{480} \oplus \mathbb{Z}_2$ | $\cdots$ |
The following tables for the p-primary components of $\pi_\bullet$ in low degrees are taken from (Hatcher), where in turn they were generated based on (Ravenel 86).
The horizontal index is the degree $n$ of the stable homotopy group $\pi_n$. The appearance of a string of $k$ connected dots vertically above index $n$ means that there is a direct summand primary group of order $p^k$. The bottom rows in each case are given by the image of the J-homomorphism. See example 1 below for illustration.
$p = 2$-primary component
$p = 3$-primary component
$p = 5$-primary component
The finite abelian group $\pi_3(\mathbb{S}) \simeq \mathbb{Z}_{24}$ decomposes into primary groups as $\simeq \mathbb{Z}_8 \oplus \mathbb{Z}_3$. Here $8 = 2^3$ corresponds to the three dots above $n = 3$ in the first table, and $3 = 3^1$ to the single dot over $n = 3$ in the second.
The finite abelian group $\pi_7(\mathbb{S}) \simeq \mathbb{Z}_{24}$ decomposes into primary groups as $\simeq \mathbb{Z}_{16} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$. Here $16 = 2^4$ corresponds to the four dots above $n = 7$ in the first table, and $3 = 3^1$ to the single dot over $n = 7$ in the second and $5 = 5^1$ to the single dot over $n = 7$ in the third table.
The homotopy group $\pi_{n+k}(S^k)$ is a finite group for $k \gt 0$ except when $n = 2m$ and $k = 2m -1$ in which case
for $F_m$ a finite group.
(Serre 53)
The following characterizes the image of the J-homomorphism
from the homotopy groups of the stable orthogonal group to the stable homotopy groups of spheres. This was first conjectured in (Adams 66) (since called the Adams conjecture) and then proven in (Quillen 71).
By the discussion at orthogonal group – homotopy groups we have that the homotopy groups of the stable orthogonal group are
$n\;mod\; 8$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
$\pi_n(O)$ | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | 0 | $\mathbb{Z}$ | 0 | 0 | 0 | $\mathbb{Z}$ |
Because all groups appearing here and in the following are cyclic groups, we instead write down the order
$n\;mod\; 8$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
${\vert\pi_n(O)\vert}$ | 2 | 2 | 1 | $\infty$ | 1 | 1 | 1 | $\infty$ |
The stable homotopy groups of spheres $\pi_n(\mathbb{S})$ are the direct sum of the (cyclic) image of the J-homomorphism, and the kernel of the Adams e-invariant.
Moreover,
for $n = 0 \;mod \;$ and $n = 1 \;mod \; 8$ and $n$ positive the J-homomorphism is injective, hence its image is $\mathbb{Z}_2$,
for $n = 3\; mod\; 8$ and $n = 7 \; mod \; 8$ hence for $n = 4 k -1$, the order of the image is equal to the denominator of $B_{2k}/4k$, where $B_{2k}$ is the Bernoulli number
for all other cases the image is necessarily zero.
$n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Whitehead tower of orthogonal group | orientation | spin | string | fivebrane | ninebrane | |||||||||||||
homotopy groups of stable orthogonal group | $\pi_n(O)$ | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | 0 | $\mathbb{Z}$ | 0 | 0 | 0 | $\mathbb{Z}$ | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | 0 | $\mathbb{Z}$ | 0 | 0 | 0 | $\mathbb{Z}$ | $\mathbb{Z}_2$ |
stable homotopy groups of spheres | $\pi_n(\mathbb{S})$ | $\mathbb{Z}$ | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | $\mathbb{Z}_{24}$ | 0 | 0 | $\mathbb{Z}_2$ | $\mathbb{Z}_{240}$ | $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ | $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ | $\mathbb{Z}_6$ | $\mathbb{Z}_{504}$ | 0 | $\mathbb{Z}_3$ | $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ | $\mathbb{Z}_{480} \oplus \mathbb{Z}_2$ | $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ |
image of J-homomorphism | $im(\pi_n(J))$ | 0 | $\mathbb{Z}_2$ | 0 | $\mathbb{Z}_{24}$ | 0 | 0 | 0 | $\mathbb{Z}_{240}$ | $\mathbb{Z}_2$ | $\mathbb{Z}_2$ | 0 | $\mathbb{Z}_{504}$ | 0 | 0 | 0 | $\mathbb{Z}_{480}$ | $\mathbb{Z}_2$ |
Introductions and surveys include
Alex Writght, Homotopy groups of spheres: A very basic introduction (pdf)
Alan Hatcher, Stable homotopy groups of spheres (html)
Mark Mahowald, Doug Ravenel, Towards a Global Understanding of the Homotopy Groups of Spheres (pdf)
Haynes Miller, Doug Ravenel, Mark Mahowald’s work on the homotopy groups of spheres (pdf)
Doug Ravenel, Complex cobordism and stable homotopy groups of spheres (web)
A tabulation of stable homotopy groups of spheres is in
Original articles on basic properties include
See also
Wikipedia, Homotopy groups of spheres
MO, Computational complexity of computing homotopy groups of spheres
Discussion of the image of the J-homomorphism is due to
For formalization in homotopy type theory see at