nLab (infinity,1)-pullback

Redirected from "over quasi-categories".
Contents

Context

(,1)(\infty,1)-Category theory

Internal (,1)(\infty,1)-Categories

Directed homotopy type theory

Limits and colimits

Contents

Idea

An (,1)(\infty,1)-pullback is a limit in an (∞,1)-category 𝒞\mathcal{C} over a diagram of the shape

{acb}𝒞. \{a \to c \leftarrow b\} \to \mathcal{C} \,.

In other words it is a cone

A× CB B A C \array{ A \times_C B &\to& B \\ \downarrow &\cong\swArrow& \downarrow \\ A &\to& C }

which is universal among all such cones in the (,1)(\infty,1)-categorical sense.

This is the analog in (∞,1)-category theory of the notion of pullback in category theory.

Incarnations

In quasi-categories

Let 𝒞\mathcal{C} be a quasi-category. Recall the notion of limit in a quasi-category.

The non-degenerate cells of the simplicial set Δ[1]×Δ[1]\Delta[1] \times \Delta[1] obtained as the cartesian product of the simplicial 1-simplex with itself look like

(0,0) (1,0) (0,1) (1,1) \array{ (0,0) &\to& (1,0) \\ \downarrow &\searrow& \downarrow \\ (0,1) &\to& (1,1) }

A square in a quasi-category CC is an image of this in CC, i.e. a morphism

s:Δ[1]×Δ[1]C. s : \Delta[1] \times \Delta[1] \to C \,.

The simplicial square Δ[1] ×2\Delta[1]^{\times 2} is isomorphic, as a simplicial set, to the join of simplicial sets of a 2-horn with the point:

Δ[1]×Δ[1]{v}Λ[2] 2=(v 1 0 2) \Delta[1] \times \Delta[1] \simeq \{v\} \star \Lambda[2]_2 = \left( \array{ v &\to& 1 \\ \downarrow &\searrow& \downarrow \\ 0 &\to& 2 } \right)

and

Δ[1]×Δ[1]Λ[2] 0{v}=(0 1 2 v). \Delta[1] \times \Delta[1] \simeq \Lambda[2]_0 \star \{v\} = \left( \array{ 0&\to& 1 \\ \downarrow &\searrow& \downarrow \\ 2 &\to& v } \right) \,.

If a square Δ[1]×Δ[1]Λ[2] 0{v}C\Delta[1] \times \Delta[1] \simeq \Lambda[2]_0 \star \{v\} \to C exhibits {v}C\{v\} \to C as a quasi-categorical limit over F:Λ[2] 0CF : \Lambda[2]_0 \to C, we say the limit

v:=lim F:=F(1) F(0)F(2) v := \lim_\leftarrow F := F(1) \prod_{F(0)} F(2)

is the quasi-categorical pullback of the diagram FF.

Pasting law

We have the following quasi-categorical analog of the familiar pasting law of pullbacks in ordinary category theory:

A pasting diagram of two squares is a morphism

σ:Δ[2]×Δ[1]𝒸. \sigma : \Delta[2] \times \Delta[1] \to \mathcal{c} \,.

Schematically this looks like

a b c d e f \array{ a &\to& b &\to& c \\ \downarrow && \downarrow && \downarrow \\ d &\to& e &\to& f }

in 𝒞\mathcal{C}.

Proposition

(pasting law for quasi-categorical pullbacks)

If the right square is a pullback diagram in 𝒞\mathcal{C}, then the left square is precisely if the outer square is.

This is HTT, lemma 4.4.2.1

Proof

Consider the diagram inclusions

( c d e f)( b c d e f)( b d e) \left( \array{ && && c \\ && && \downarrow \\ d &\to& e &\to& f } \right) \;\;\to\;\; \left( \array{ && b &\to& c \\ && \downarrow && \downarrow \\ d &\to& e &\to& f } \right) \;\;\leftarrow\;\; \left( \array{ && b \\ && \downarrow \\ d &\to& e } \right)

and the induced diagram of over quasi-categories

𝒞 /σ(c,d,f)ϕ𝒞 /σ(b,c,d,e,f)ψ𝒞 /σ(b,d,e). \mathcal{C}_{/\sigma(c,d,f)} \stackrel{\phi}{\leftarrow} \mathcal{C}_{/\sigma(b,c,d,e,f)} \stackrel{\psi}{\to} \mathcal{C}_{/\sigma(b,d,e)} \,.

Notice that by definition of limit in a quasi-category the quasi-categorical pullback σ(c)× σ(f)σ(d)\sigma(c) \times_{\sigma(f)} \sigma(d) is the terminal object in 𝒞 /σ(c,d,f)\mathcal{C}_{/\sigma(c,d,f)}, while σ(d)× σ(e)σ(b)\sigma(d) \times_{\sigma(e)} \sigma(b) is the terminal object in 𝒞 /σ(b,d,e)\mathcal{C}_{/\sigma(b,d,e)}.

The strategy now is to show that both these morphisms ϕ\phi and ψ\psi are acyclic Kan fibrations. That will imply that these terminal objects coincide as objects of 𝒞\mathcal{C}.

First notice that the inclusion

( b d e)( b c d e f) \left( \array{ && b \\ && \downarrow \\ d &\to& e } \right) \;\; \to \;\; \left( \array{ && b &\to& c \\ && \downarrow && \downarrow \\ d &\to& e &\to& f } \right)

is a left anodyne morphism, being the composite of pushouts of left horn inclusions

( b d e) ( b c d e) ( b c d e f) ( b c d e f) ( b c d e f). \begin{aligned} \left( \array{ && b \\ && \downarrow \\ d &\to& e } \right) & \to \left( \array{ && b &\to& c \\ && \downarrow && \\ d &\to& e } \right) \\ & \to \left( \array{ && b &\to& c \\ && \downarrow && \downarrow \\ d &\to& e && f } \right) \\ & \to \left( \array{ && b &\to& c \\ && \downarrow &\searrow& \downarrow \\ d &\to& e && f } \right) \\ & \to \left( \array{ && b &\to& c \\ && \downarrow &\searrow& \downarrow \\ d &\to& e &\to& f } \right) \end{aligned} \,.

We could also prove this by showing that this functor is homotopy initial using the characterization in terms of slice categories, and then invoking the theorem of HTT 4.1.1.3(4) which says (in dual form) that an inclusion of simplicial sets is homotopy initial if and only if it is left anodyne.

One of the properties of left anodyne morphisms is that restriction of over quasi-categories along left anodyne morphisms produces an acyclic Kan fibration. This shows the desired statement for ψ\psi.

To see that ϕ\phi is also an acyclic fibration observe that ϕ\phi can be factored as

𝒞 /σ(c,d,f)𝒞 /σ(c,d,e,f)𝒞 /σ(b,c,d,e,f) \mathcal{C}_{/\sigma(c,d,f)} \leftarrow \mathcal{C}_{/\sigma(c,d,e,f)} \leftarrow \mathcal{C}_{/\sigma(b,c,d,e,f)}

Observe that 𝒞 /σ(c,d,e,f)𝒞 /σ(b,c,d,e,f)\mathcal{C}_{/\sigma(c,d,e,f)}\leftarrow\mathcal{C}_{/\sigma(b,c,d,e,f)} fits into a pullback diagram

𝒞 /σ(c,d,e,f) 𝒞 /σ(b,c,d,e,f) 𝒞 /σ(c,e,f) 𝒞 /σ(b,c,e,f) \array{ \mathcal{C}_{/\sigma(c,d,e,f)} & \leftarrow & \mathcal{C}_{/\sigma(b,c,d,e,f)} \\ \downarrow & & \downarrow \\ \mathcal{C}_{/\sigma(c,e,f)} & \leftarrow & \mathcal{C}_{/\sigma(b,c,e,f)} }

and hence is an acyclic Kan fibration since 𝒞 /σ(c,e,f)𝒞 /σ(b,c,e,f)\mathcal{C}_{/\sigma(c,e,f)} \leftarrow \mathcal{C}_{/\sigma(b,c,e,f)} is one, on account of the fact that the square

σ(b) σ(c) σ(e) σ(f) \array{ \sigma(b) & \to & \sigma(c) \\ \downarrow & & \downarrow \\ \sigma(e) & \to & \sigma(f) }

is a pullback in 𝒞\mathcal{C}. Finally, 𝒞 /σ(c,d,f)𝒞 /σ(c,d,e,f)\mathcal{C}_{/\sigma(c,d,f)} \leftarrow \mathcal{C}_{/\sigma(c,d,e,f)} is a trivial fibration since

( c d f) ( c d e f) \array{ \left( \array{ & & c \\ & & \downarrow \\ d & \to & f } \right) & \to & \left( \array{ & & & & c \\ & & & & \downarrow \\ d & \to & e & \to & f } \right) }

is left anodyne; clearly this is a pushout of (df)(def)(d\to f)\to (d\to e\to f) and so it suffices to show that Δ {0,2}Δ {0,1,2}\Delta^{\{0,2\}}\to \Delta^{\{0,1,2\}} is left anodyne. But this map factors as Δ {0,2}Λ 0 2Δ {0,1,2}\Delta^{\{0,2\}}\to \Lambda^2_0 \to \Delta^{\{0,1,2\}} and clearly Δ {0,2}Λ 0 2\Delta^{\{0,2\}}\to \Lambda^2_0 is left anodyne since it is a pushout of Δ {0}Δ {0,1}\Delta^{\{0\}}\to \Delta^{\{0,1\}}.

In model categories

In derivators

In simplicial type theory

For Segal types

In simplicial type theory, the Segal types are the types that represent (infinity,1)-precategories. Let AA be a type in simplicial type theory, and let x:Ax:A, y:Ay:A, z:Az:A be three elements in AA and let f:hom A(x,z)f:\mathrm{hom}_A(x, z) and g:hom A(y,z)g:\mathrm{hom}_A(y, z) be two morphisms. The (,1)(\infty,1)-pullback of ff and gg is an tuple consisting of

  • an element x× z f,gy:Ax \times_z^{f,g} y:A,

  • a morphism outl(f,g):hom A(x× z f,gy,x)\mathrm{outl}(f, g):\mathrm{hom}_A(x \times_z^{f,g} y, x),

  • a morphism outr(f,g):hom A(x× z f,gy,y)\mathrm{outr}(f, g):\mathrm{hom}_A(x \times_z^{f,g} y, y),

  • and a morphism compout(f,g):hom A(x× z f,gy,z)\mathrm{compout}(f, g):\mathrm{hom}_A(x \times_z^{f,g} y, z)

such that

foutl(f,g)=compout(f,g)andgoutr(f,g)=compout(f,g)f \circ \mathrm{outl}(f, g) = \mathrm{compout}(f, g) \qquad \mathrm{and} \qquad g \circ \mathrm{outr}(f, g) = \mathrm{compout}(f, g)
  • and for any other element w:Aw:A with morphisms h:hom A(w,x)h:\mathrm{hom}_A(w, x), j:hom A(w,y)j:\mathrm{hom}_A(w, y) and k:hom A(w,z)k:\mathrm{hom}_A(w, z) such that fh=kf \circ h = k and gj=kg \circ j = k, there exists a unique morphism l(z,h,j,k):hom A(z,x× z f,gy)l(z, h, j, k):\mathrm{hom}_A(z, x \times_z^{f,g} y) such that
    h=outl(f,g)l(z,h,j,k)andj=outr(f,g)l(z,h,j,k)andk=compout(f,g)l(z,h,j,k)h = \mathrm{outl}(f, g) \circ l(z, h, j, k) \qquad \mathrm{and} \qquad j = \mathrm{outr}(f, g) \circ l(z, h, j, k) \qquad \mathrm{and} \qquad k = \mathrm{compout}(f, g) \circ l(z, h, j, k)

For arbitrary types

The notion of an (,1)(\infty,1)-pullback can be generalised from Segal types to arbitrary types in simplicial type theory, which represent simplicial infinity-groupoids. In a Segal type AA, given morphisms f:hom A(x,y)f:\mathrm{hom}_A(x, y), g:hom A(y,z)g:\mathrm{hom}_A(y, z), and h:hom A(x,z)h:\mathrm{hom}_A(x, z), gf=hg \circ f = h if and only if hh is the unique composite of ff and gg. This means that we can use the latter condition in the definition of an (,1)(\infty,1)-pullback in types which are not Segal and thus do not have a composition function on morphisms.

Let AA be a type in simplicial type theory, and let x:Ax:A, y:Ay:A, z:Az:A be three elements in AA and let f:hom A(x,z)f:\mathrm{hom}_A(x, z) and g:hom A(y,z)g:\mathrm{hom}_A(y, z) be two morphisms. The (,1)(\infty,1)-pullback of ff and gg is an tuple consisting of

  • an element x× z f,gy:Ax \times_z^{f,g} y:A,

  • a morphism outl(f,g):hom A(x× z f,gy,x)\mathrm{outl}(f, g):\mathrm{hom}_A(x \times_z^{f,g} y, x),

  • a morphism outr(f,g):hom A(x× z f,gy,y)\mathrm{outr}(f, g):\mathrm{hom}_A(x \times_z^{f,g} y, y),

  • and a morphism compout(f,g):hom A(x× z f,gy,z)\mathrm{compout}(f, g):\mathrm{hom}_A(x \times_z^{f,g} y, z)

such that

  • compout(f,g)\mathrm{compout}(f, g) is the unique composite of ff and outl(f,g)\mathrm{outl}(f, g) and the unique composite of gg and outr(f,g)\mathrm{outr}(f, g),

  • and for any other element w:Aw:A with morphisms h:hom A(w,x)h:\mathrm{hom}_A(w, x), j:hom A(w,y)j:\mathrm{hom}_A(w, y) and k:hom A(w,z)k:\mathrm{hom}_A(w, z) such that kk is the unique composite of ff and hh and the unique composite of gg and jj, there exists a unique morphism l(z,h,j,k):hom A(z,x× z f,gy)l(z, h, j, k):\mathrm{hom}_A(z, x \times_z^{f,g} y) such that hh is the unique composite of outl(f,g)\mathrm{outl}(f, g) and l(z,h,j,k)l(z, h, j, k), jj is the unique composite of outr(f,g)\mathrm{outr}(f, g) and l(z,h,j,k)l(z, h, j, k), and kk is the unique composite of compout(f,g)\mathrm{compout}(f, g) and l(z,h,j,k)l(z, h, j, k).

The fact that this definition works for any type AA implies that (,1)(\infty,1)-pullbacks should be definable in any simplicial infinity-groupoid or simplicial object in an (infinity,1)-category, not just the (,1)(\infty,1)-categories or category objects in an (infinity,1)-category.

Examples

Fiber sequence

If 𝒞\mathcal{C} has a terminal object and *C𝒞* \to C \in \mathcal{C} is a pointed object, then the fiber or (,1)(\infty,1)-kernel of a morphisms f:BCf : B \to C is the (,1)(\infty,1)-pullback

ker(f) * B f C. \array{ ker(f) &\to& * \\ \downarrow && \downarrow \\ B &\stackrel{f}{\to}& C } \,.

For more on this see fiber sequence.

Notions of pullback:

References

In homotopy type theory

A formalization of homotopy pullbacks in homotopy type theory is Coq-coded in

Last revised on April 11, 2025 at 09:50:50. See the history of this page for a list of all contributions to it.