# nLab Frobenius monoidal functor

Contents

### Context

#### Monoidal categories

monoidal categories

# Contents

## Definition

A functor $F : C \to D$ between monoidal categories which is both a lax monoidal functor and an oplax monoidal functor is called Frobenius if the structure morphisms for the lax monoidal structure

$\nabla_{x,y} : F(x)\otimes F(y) \to F(x \otimes y)$

and for the oplax monoidal structure

$\Delta_{x,y} : F(x \otimes y) \to F(x) \otimes F(y)$

satisfy the axioms of a Frobenius algebra in that (in string diagram notation) for all objects $x,y,z$ in $C$ we have

$\left( \array{ F(x) &&&& F(y \otimes z) \\ \downarrow &&& \swarrow & \downarrow \\ F(x) && F(y)& & F(z) \\ \downarrow & \swarrow &&& \downarrow \\ F(x \otimes y) &&&& F(z) } \right) = \left( \array{ F(x) &&&& F(y \otimes z) \\ & \searrow && \swarrow \\ && F(x \otimes y \otimes z) \\ & \swarrow && \searrow \\ F(x \otimes y) &&&& F(y) } \right)$

and

$\left( \array{ F(x \otimes y) &&&& F(z) \\ \downarrow & \searrow && & \downarrow \\ F(x) && F(y) & & F(z) \\ \downarrow & && \searrow & \downarrow \\ F(x ) &&&& F(y \otimes z) } \right) = \left( \array{ F(x \otimes y) &&&& F(z) \\ & \searrow && \swarrow \\ && F(x \otimes y \otimes z) \\ & \swarrow && \searrow \\ F(x) &&&& F(y \otimes z) } \right)$

## Examples

The Moore complex functor

$C : sAb \to Ch_\bullet^+$

from abelian simplicial groups to connective chain complexes is Frobenius, as is the normalzed chains complex functor

$N : sAb \to Ch_\bullet^+ \,.$

For more on this see monoidal Dold-Kan correspondence.

## Generalizations

Frobenius monoidal functors are a special case of Frobenius linear functors between linearly distributive categories.

Equation (3.26), (3.27) in p. 81 of

• M. B. McCurdy, R. Street, What separable Frobenius monoidal functors preserve, arxiv/0904.3449 and Cahiers TGDC, 51 (2010)p. 29 - 50.