and
rational homotopy theory (equivariant, stable, parametrized, equivariant & stable, parametrized & stable)
Examples of Sullivan models in rational homotopy theory:
The PL de Rham theorem is the variant of the de Rham theorem with the smooth de Rham complex replaced by the PL de Rham complex.
Let be a field of characteristic zero (such as the rational numbers, real numbers or complex numbers).
Then the evident operation of integration of differential forms over simplices induces a quasi-isomorphism between the PL de Rham complex with coefficients in and cochain complex for singular cohomology with coefficients in
and hence an isomorphism from PL de Rham cohomology to ordinary cohomology with coefficients in (such as rational cohomology, real cohomology, complex cohomology):
(for any topological space).
(Bousfield-Gugenheim 76, Theorem 2.2)
Last revised on September 25, 2020 at 19:34:18. See the history of this page for a list of all contributions to it.