nLab PL de Rham complex of smooth manifold is equivalent to de Rham complex

Contents

Context

Rational homotopy theory

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Contents

Preliminaries

Write

(1)Ω polydR (Δ ):Δ opdgcAlgebras 0 \Omega^\bullet_{polydR} (\Delta^\bullet) \;\colon\; \Delta^\op \longrightarrow dgcAlgebras^{\geq 0}_{\mathbb{R}}

for the simplicial object in dgc-algebras given by polynomial differential forms on simplices over the real numbers (see also at fundamental theorem of dgc-algebraic rational homotopy theorychange of scalars).

Definition

(PL de Rham complex)

The for SS \in sSet a simplicial set, its PL de Rham complex is the hom-object of simplicial objects from SS to Ω polyDR \Omega^\bullet_{polyDR} (1), hence is the following end in dgcAlgebras, here over the real numbers:

(2)Ω PLdR (S)sSet(S,Ω polydR (Δ ))[n]Δ opS nΩ polydR (Δ n). \Omega^\bullet_{PLdR}(S) \;\coloneqq\; sSet \big( S,\, \Omega^\bullet_{polydR}(\Delta^\bullet) \big) \;\coloneqq\; \underset{ [n] \in \Delta^{op} }{\int} \underset{ S_n }{\oplus} \Omega^\bullet_{polydR} \big( \Delta^n \big) \,.

(Bousfield-Gugenheim 76, Sec. 2, p. 7)

For XX \in Top a topological space its PL de Rham complex is the PL de Rham complex as in (2) of its singular simplicial complex:

Ω PLdR (X)Ω PLdR (Sing(X)). \Omega^\bullet_{PLdR}(X) \;\coloneqq\; \Omega^\bullet_{PLdR} \big( Sing(X) \big) \,.

Write

(3)Ω dR ():Δ opdgcAlgebras 0 \Omega^\bullet_{dR} (-) \;\colon\; \Delta^\op \longrightarrow dgcAlgebras^{\geq 0}_{\mathbb{R}}

for the simplicial object in dgc-algebras (over the real numbers) given by smooth differential forms on simplices.

Definition

(PS de Rham complex)

The for SS \in sSet a simplicial set, its PS de Rham complex (“piecewise smooth”) is the hom-object of simplicial objects from SS to Ω dR (Δ )\Omega^\bullet_{dR}(\Delta^\bullet) (3), hence is the following end in dgcAlgebras:

(4)Ω PSdR (S)sSet(S,Ω dR (Δ ))[n]Δ opS nΩ dR (Δ n). \Omega^\bullet_{PSdR}(S) \;\coloneqq\; sSet \big( S,\, \Omega^\bullet_{dR}(\Delta^\bullet) \big) \;\coloneqq\; \underset{ [n] \in \Delta^{op} }{\int} \underset{ S_n }{\oplus} \Omega^\bullet_{dR} \big( \Delta^n \big) \,.

This receives an evident inclusion from the PL de Rham complex (4):

(5)Ω PLdR ()AAi polyAAΩ PSdR () \Omega_{PLdR}^\bullet(-) \overset{ \phantom{AA} i_{poly} \phantom{AA} }{\hookrightarrow} \Omega_{PSdR}^\bullet(-)

For XX a smooth manifold, and S(X)S(X) the simplicial complex given by any smooth triangulation, notice that:

Statement

Proposition

(PL de Rham complex of smooth manifold is equivalent to de Rham complex)

Let XX be a smooth manifold.

We have the following zig-zag of dgc-algebra quasi-isomorphisms between the PL de Rham complex of (the topological space underlying) XX and the smooth de Rham complex of XX:

Ω PLdR (S(X)) Ω dR (X) i * i poly p * Ω PLdR (X)=Ω PLdR (Sing(X)) Ω PSdR (S(X)) \array{ && \Omega^\bullet_{PLdR} \big( S(X) \big) && && \Omega^\bullet_{dR}(X) \\ & {}^{ \mathllap{ i^\ast } } \nearrow & & \searrow^{ \mathrlap{ i_{poly} } } & & {}^{ \mathllap{ p^\ast } } \swarrow \\ \mathllap{ \Omega^\bullet_{PLdR}(X) \;=\; } \Omega^\bullet_{PLdR} \big( Sing(X) \big) && && \Omega^\bullet_{PSdR} \big( S(X) \big) }

Here S(X)S(X) is the simplicial complex corresponding to any smooth triangulation of XX.

Proof

For the two morphisms on the right this is Griffith-Morgan 13, Cor. 9.9.

For the morphism on the left this follows since S(X)Sing(X)S(X) \hookrightarrow Sing(X) is a weak homotopy equivalence and since Ω PLdR \Omega^\bullet_{PLdR}, being a left Quillen functor preserves weak equivalences between cofibrant objects (where every simplicial set being cofibrant), by Ken Brown's lemma.

References

Last revised on July 7, 2021 at 16:15:15. See the history of this page for a list of all contributions to it.