nLab W*-category

Contents

Context

Operator algebra

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)

Introduction

Concepts

field theory:

Lagrangian field theory

quantization

quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization

renormalization

Theorems

States and observables

Operator algebra

Local QFT

Perturbative QFT

Category theory

Contents

Idea

The concept of W *W^\ast-categories is the special case of that of C * C^\ast -categories like von Neumann algebras (aka W *W^\ast-algebras) are a special case of C * C^\ast -algebras. Hence a more systematic name for W *W^\ast-categories would be W *W^\ast-algebroids or von Neumann algebroids.

Definition

A W*-category is a C*-category CC such that for any objects A,BCA,B\in C, the hom-object Hom(A,B)Hom(A,B) admits a predual as a Banach space. That is, there is a Banach space Hom(A,B) *Hom(A,B)_* such that (Hom(A,B) *) *(Hom(A,B)_*)^* is isomorphic to Hom(A,B)Hom(A,B) in the category of Banach spaces and contractive maps (alias short maps).

W*-functors

A W*-functor is a functor F:CDF\colon C\to D such that F(f *)=F(f) *F(f^*)=F(f)^* for any morphism ff in CC and the map of Banach spaces Hom(A,B)Hom(F(A),F(B))Hom(A,B)\to Hom(F(A),F(B)) admits a predual for any objects AA and BB in CC.

Bounded natural transformation

The good notion of natural transformations between W*-categories is given by bounded natural transformations: a natural transformation t:FGt\colon F\to G between W*-functors is bounded if the norm of t X:F(X)G(X)t_X\colon F(X)\to G(X) is bounded with respect to the object XX of CC.

The bicategory of W*-categories

W*-categories, W*-functors, and bounded natural transformations form a bicategory.

This bicategory is a good setting to work with objects like Hilbert spaces, Hilbert W*-modules over von Neumann algebras, W*-representations of von Neumann algebras, etc.

In particular, in this bicategory, the category of Hilbert spaces has infinite direct sums (generalizing the definition of a biproduct to infinite families of objects), unlike in the usual bicategory of categories, functors, and natural transformations, where it only has finite limits and finite colimits.

The same is true for Hilbert W*-modules over von Neumann algebras, W*-representations of von Neumann algebras.

References

Understanding complete W * W^\ast -categories as 2-Hilbert spaces:

Exposition:

  • Nivedita: Towards Models for 2-Hilb and 3-Hilb as targets for functorial field theories, talk notes (2024) [pdf]

Last revised on January 16, 2025 at 14:42:22. See the history of this page for a list of all contributions to it.