nLab
equivariant connection
Contents
Context
-Chern-Weil theory
Differential cohomology
differential cohomology
Ingredients
Connections on bundles
Higher abelian differential cohomology
Higher nonabelian differential cohomology
Fiber integration
Application to gauge theory
Representation theory
representation theory
geometric representation theory
Ingredients
representation, 2-representation, ∞-representation
-
group, ∞-group
-
group algebra, algebraic group, Lie algebra
-
vector space, n-vector space
-
affine space, symplectic vector space
-
action, ∞-action
-
module, equivariant object
-
bimodule, Morita equivalence
-
induced representation, Frobenius reciprocity
-
Hilbert space, Banach space, Fourier transform, functional analysis
-
orbit, coadjoint orbit, Killing form
-
unitary representation
-
geometric quantization, coherent state
-
socle, quiver
-
module algebra, comodule algebra, Hopf action, measuring
Geometric representation theory
-
D-module, perverse sheaf,
-
Grothendieck group, lambda-ring, symmetric function, formal group
-
principal bundle, torsor, vector bundle, Atiyah Lie algebroid
-
geometric function theory, groupoidification
-
Eilenberg-Moore category, algebra over an operad, actegory, crossed module
-
reconstruction theorems
Contents
Idea
An equivariant connection is a connection on a bundle over a space with action by a group which is equipped with -equivariant structure, hence equivalently – in the language of higher differential geometry of smooth groupoids – an extension of a connection to a connection on the action groupoid :
Examples
Last revised on March 15, 2021 at 07:31:50.
See the history of this page for a list of all contributions to it.