nLab gaunt category




A category is called gaunt if all its isomorphisms are in fact identities. This is a property of strict categories; that is, it is not invariant under equivalence of categories. See below for some related concepts that are invariant.


Relation to skeletal categories, thin categories, poset categories

Gaunt categories are necessarily skeletal; a skeletal category is gaunt iff every automorphism is an identity morphism. Consequently a thin gaunt category is skeletal, and since a thin skeletal category is a poset category a thin gaunt category is also a poset category.

Note that a gaunt category need not be thin, since we may have parallel non-isomorphisms which are not equal. Similarly, a thin category need not be gaunt since we may have isomorphisms that aren’t the identity.

Relation to complete Segal spaces

The nerve simplicial set of a category, regarded as a simplicial object in homotopy types under the inclusion SetGrpdSet \hookrightarrow \infty Grpd, is a complete Segal space precisely if the category is gaunt. More discussion of this is at Segal space – Examples – In Set.

To make sense of the definition of a gaunt category, we need to use equality of objects: For every isomorphism f:abf : a \simeq b, there is an equality p:a=bp : a = b, relative to which ff equals the identity at aa. Replacing the equality pp by an isomorphism g:abg : a \simeq b, the resulting condition holds for all categories. This echoes how one might understand the definition in univalent foundations: the univalence condition for a univalent category is another way of saying that every isomorphism is an identity (and uniquely so).

Alternatively, we could avoid the equality on objects by requiring only that every endoisomorphism f:aaf : a \simeq a be equal to the identity at aa. This amounts to requiring that the core be a thin category, i.e., that parallel isomorphisms are equal.

Incidentally, we may view both strict categories and categories up to equivalence as embedded in the type of flagged categories?. Recall that a flagged category consists of a category CC, a groupoid XX, and a surjection p:XCp:X\to C of groupoids from XX to the underlying groupoid of objects of CC. In this way, we can view categories as those flagged categories where pp is an equivalence, and strict categories as those flagged categories where XX is a set (up to homotopy). The intersection of the categories and the strict categories within the type of flagged categories is then exactly this type of core-thin categories.


The term “gaunt category” was apparently introduced in

in the context of a discussion of (infinity,n)-categories.

In the Elephant, gaunt categories are briefly mentioned under the name “stiff categories”, in the paragraph preceding B1.3.11 (about splitting of Grothendieck fibrations).

Last revised on March 3, 2021 at 16:02:22. See the history of this page for a list of all contributions to it.