higher symplectic geometry


Symplectic geometry

Higher geometry



Higher symplectic geometry is the generalization of symplectic geometry to the context of higher geometry.

It involves two kinds of generalizations:

  1. the symplectic form generalizes from a 2-form to a form of arbitrary arity. This aspect is called multisymplectic geometry.

  2. the base manifold is generalized to a smooth ∞-groupoid or ∞-Lie algebroid. For binary symplectic forms this is called a symplectic Lie n-algebroid.

In the full higher symplectic geometry both of these aspects are unified: a multisymplectic \infty-groupoid is a smooth ∞-groupoid equipped with a differential n-form on smooth ∞-groupoids satisfying some condition.

Examples of higher symplectic geometries arise naturally as the covariant phase spaces “over the point” or “in top codimension” (in the sense of extended topological quantum field theory) in systems of ∞-Chern-Simons theory: their \infty-multisymplectic form is the invariant polynomial that defines the theory.



Let 𝔞\mathfrak{a} be an L-∞ algebroid. For nn \in \mathbb{N}, an n-plectic form or multisymplectic form of nn arguments on 𝔞\mathfrak{a} is

  • an invariant polynomial ω\omega on 𝔞\mathfrak{a} which is nn-linear (takes nn arguments):

    ωW n(𝔞)=Ω n(𝔞); \omega \in W^n(\mathfrak{a}) = \Omega^n(\mathfrak{a}) \,;
  • such that the contraction morphism

    ι ()ω:T𝔞W n1(𝔞)=Ω n1(𝔞) \iota_{(-)}\omega : T \mathfrak{a} \to W^{n-1}(\mathfrak{a}) = \Omega^{n-1}(\mathfrak{a})

in injective.


If 𝔞\mathfrak{a} is a Lie 0-algebroid (over a smooth manifold) then it is simply that smooth manifold, 𝔞=X\mathfrak{a} = X. In this case W(𝔞)=Ω (X)W(\mathfrak{a}) = \Omega^{\bullet}(X) is the ordinary de Rham complex and an invariant polynomial is a closed differential form of positive degree.

In this case an nn-plectic form on 𝔞\mathfrak{a} is a closed nn-form ω(,,.,)\omega(-,-,.\dots, -) on XX such that for every vector field vΓ(TX)v \in \Gamma(T X) we have

(ω(v,,,)=0)(v=0). (\omega(v,-,\cdots,-) = 0) \;\; \Rightarrow \;\; (v = 0).


Higher Chern-Simons theory

Every invariant polynomial ω\omega induces an ∞-Chern-Simons theory action functional

S CS:Ω(Σ,𝔞). S_{CS} : \Omega(\Sigma,\mathfrak{a}) \to \mathbb{R} \,.

The variation of that functional is

δS CS:A Σω(δA,F A,,F A). \delta S_{CS} : A \mapsto \int_\Sigma \omega(\delta A, F_A, \cdots, F_A) \,.

Therefore the condition that the invariant polynomial is nn-plectic amounts to saying that S CSS_{CS} has no spurious global symmetries.


duality between algebra and geometry in physics:

Poisson algebraPoisson manifold
deformation quantizationgeometric quantization
algebra of observablesspace of states
Heisenberg pictureSchrödinger picture
higher algebrahigher geometry
Poisson n-algebran-plectic manifold
En-algebrashigher symplectic geometry
BD-BV quantizationhigher geometric quantization
factorization algebra of observablesextended quantum field theory
factorization homologycobordism representation

∞-Chern-Simons theory from binary and non-degenerate invariant polynomial

nn \in \mathbb{N}symplectic Lie n-algebroidLie integrated smooth ∞-groupoid = moduli ∞-stack of fields of (n+1)(n+1)-d sigma-modelhigher symplectic geometry(n+1)(n+1)d sigma-modeldg-Lagrangian submanifold/ real polarization leaf= brane(n+1)-module of quantum states in codimension (n+1)(n+1)discussed in:
0symplectic manifoldsymplectic manifoldsymplectic geometryLagrangian submanifoldordinary space of states (in geometric quantization)geometric quantization
1Poisson Lie algebroidsymplectic groupoid2-plectic geometryPoisson sigma-modelcoisotropic submanifold (of underlying Poisson manifold)brane of Poisson sigma-model2-module = category of modules over strict deformation quantiized algebra of observablesextended geometric quantization of 2d Chern-Simons theory
2Courant Lie 2-algebroidsymplectic 2-groupoid3-plectic geometryCourant sigma-modelDirac structureD-brane in type II geometry
nnsymplectic Lie n-algebroidsymplectic n-groupoid(n+1)-plectic geometryd=n+1d = n+1 AKSZ sigma-model

(adapted from Ševera 00)


Discussion of what here we call “higher symplectic geometry over Lie 0-algebroids” (multisymplectic geometry) is in

For more references see multisymplectic geometry.

Last revised on February 8, 2013 at 02:02:25. See the history of this page for a list of all contributions to it.