Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
Background
Basic concepts
equivalences in/of $(\infty,1)$-categories
Universal constructions
Local presentation
Theorems
Extra stuff, structure, properties
Models
An ∞-group is a group object in ∞Grpd.
Equivalently (by the delooping hypothesis) it is a pointed connected $\infty$-groupoid.
Under the identification of ∞Grpd with Top this is known as a grouplike $A_\infty$-space, for instance.
An $\infty$-Lie group is accordingly a group object in ∞-Lie groupoids. And so on.
For details see groupoid object in an (∞,1)-category.
By
$\infty$-group, braided ∞-group
free infinity-group type?
(For more see also the references at infinity-action.)
A standard textbook reference on $\infty$-groups in the classical model structure on simplicial sets is
Group objects in (infinity,1)-categories are the topic of
Model category presentations of group(oid) objects in $\infty Grpd$ by groupoidal complete Segal spaces are discussed in
Adding inverses to diagrams encoding algebraic structures, Homology, Homotopy and Applications 10 (2008), no. 2, 149–174. (arXiv:0610291)
Adding inverses to diagrams II: Invertible homotopy theories are spaces, Homology, Homotopy and Applications, Vol. 10 (2008), No. 2, pp.175-193. (web, arXiv:0710.2254)
Discussion from the point of view of category objects in an (∞,1)-category is in
The homotopy theory of $\infty$-groups that are n-connected and r-truncated for $n \leq r$ is discussed in
/S0022-4049(98)00143-1“>doi:10.1016/S0022-4049(98)00143-1</a>)
Discussion of aspects of ordinary group theory in relation to $\infty$-group theory:
Discussion of $\infty$-groups in homotopy type theory:
Last revised on January 24, 2023 at 17:00:02. See the history of this page for a list of all contributions to it.