nLab
local BRST cohomology

Contents

Context

Algebraic Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)

Introduction

Concepts

field theory:

Lagrangian field theory

quantization

quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization

renormalization

Theorems

States and observables

Operator algebra

Local QFT

Perturbative QFT

Higher geometry

Contents

Idea

Given a Lagrangian field theory (E,L)(E,\mathbf{L}) with field bundle EfbΣE \overset{fb}{\to} \Sigma over some spacetime Σ\Sigma and local Lagrangian density L\mathbf{L}, then its local BV-BRST complex (or local BRST complex, for short) is the realization of the BV-BRST complex not on local observables A=τ ΣαA = \tau_{\Sigma} \alpha given by functionals on the space of field histories Γ Σ(E) δ EL=0\Gamma_{\Sigma}(E)_{\delta_{EL} = 0} which are transgressions τ Σ\tau_{\Sigma} of variational differential forms αΩ Σ ,(E)\alpha \in \Omega^{\bullet, \bullet}_\Sigma(E) on the jet bundle, but on these variational differential forms themselves (whence “local”, i.e. before transgression).

If ss denotes the BV-BRST differential in a BV-resolution Ω Σ ,(E)| BV\Omega^{\bullet,\bullet}_\Sigma(E)\vert_{\mathcal{E}_{BV}} of the restriction to the shell J Σ (E)\mathcal{E} \hookrightarrow J^\infty_\Sigma(E) of the variational bicomplex Ω Σ ,(E)\Omega^{\bullet,\bullet}_\Sigma(E) with its total spacetime derivative dd (horizontal derivative), then the local BV-BRST cohomology is the cochain cohomology of s+ds + d, hence of the total complex of the double complex given by ss and dd.

Generally, considering variational differential forms up to dd-exact terms is the “local” incarnation of what under the integration involved in the transgression is integration by parts and it is in this way that “local BV-BRST cohomology” knows about the actual BV-BRST cohomology on local observables.

Example

Consider local coordinates (ϕ a)(\phi^a) on the fibers of the field bundle. The corresponding antifield coordinates are to be denoted ϕ¯ a\overline{\phi}_a and the BV-BRST differential takes them to the corresponding component

s(ϕ¯ a)=δ ElLδϕ a s(\overline{\phi}_a) = \frac{\delta_{El} L}{\delta \phi^a}

of the Euler-Lagrange form.

In degree (p+1,0)(p+1,0) the s+ds+d-closed elements in vanishing ghost degree are pairs (v,J v)(v,J_v) consisting of an infinitesimal symmetry of the Lagrangian vv, regarded as an antifield density v aϕ¯ advol Σv^a \overline{\phi}_a dvol_\Sigma, together with a corresponding conserved Noether current J vJ_v:

{J v} d {dJ vι vδ ELL=0} s {v aϕ¯ advol Σ} \array{ \{J_v\} &\overset{d}{\longrightarrow}& \{ \overset{= 0}{\overbrace{ d J_v - \iota_v \delta_{EL}\mathbf{L} }} \} \\ && \uparrow\mathrlap{-s} \\ && \{ v^a \overline{\phi}_a dvol_\Sigma\} }

Such pairs are (s+d)(s+d)-exact if on-shell the infintiesimal symmetry coincides with an infinitesimal gauge symmetry. To see this, recall:

An infinitesimal gauge symmetry v ϵv_\epsilon of gauge parameter (ϵ α)(\epsilon^\alpha) is a vector field on the jet bundle with components of the form

v ϵϕ aR α aϵ α+R α aμdϵ αdx μ \mathcal{L}_{v_\epsilon} \phi^a \;\coloneqq\; R^a_\alpha \epsilon^\alpha + R^{a \mu}_\alpha \frac{d \epsilon^\alpha}{d x^\mu}

such that this is an infinitesimal symmetry of the Lagrangian in that

ι v ϵδ ELL =v aδ ELLδϕ advol Σ =ϵ α(R α aδ ELLδϕ addx μ(R α aμδ ELLδϕ a))dvol Σ+d(ϵ αR α aμδ ELLδϕ a)ι μdvol Σ =0+d(...) \begin{aligned} \iota_{v_\epsilon} \delta_{EL} \mathbf{L} & = v^a \frac{\delta_{EL} L}{\delta \phi^a} dvol_\Sigma \\ & = \epsilon^\alpha \left( R^a_\alpha \frac{\delta_{EL} L}{ \delta \phi^a} - \frac{d}{d x^\mu} \left( R^{a \mu}_\alpha \frac{\delta_{EL} L}{\delta \phi^a} \right) \right) dvol_\Sigma + d\left( \epsilon^\alpha R^{a \mu}_\alpha \frac{\delta_{EL} L}{\delta \phi^a} \right) \iota_{\partial_\mu} dvol_\Sigma \\ & = 0 + d(...) \end{aligned}

for all (ϵ α)(\epsilon^\alpha).

The corresponding antighosts c¯ α\overline{c}_\alpha are taken by the BV-BRST differential to the antifield-preimage of the term on the left:

s(c¯ α)=R α aϕ¯ addx μ(R α aμϕ¯ a). s\left(\overline{c}_\alpha\right) \;=\; R^a_\alpha \overline{\phi}_a - \frac{d}{d x^\mu} \left( R^{a \mu}_\alpha \overline{\phi}_a \right) \,.

Moreover, an on-shell vanishing infinitesimal symmetry of the Lagrangian is a vector field with components of the form

κ abδ ELLδϕ a \kappa^{a b} \frac{\delta_{EL} L}{\delta \phi^a}

for κ ab=κ ba\kappa^{a b} = - \kappa^{b a} a skew-symmetric system of smooth functions on the jet bundle.

The linear combination of such an infinitesimal gauge symmetry and an on-shell vanishing infinitesimal symmetry is (s+d)(s+d)-exact:

v advol Σ =(R α aϵ α+R α aμdϵ αdx μ+κ abδ ELLδϕ a)dvol Σ =s(ϵ αc¯ α12κ abϕ¯ aϕ¯ b)dvol σ+d(ϵ αR α aμ)ι μdvol Σ \begin{aligned} v^a dvol_\Sigma & = \left( R^a_\alpha \epsilon^\alpha + R^{a \mu}_\alpha \frac{d \epsilon^\alpha}{d x^\mu} + \kappa^{a b} \frac{\delta_{EL} L }{ \delta \phi^a } \right) dvol_\Sigma \\ & = s \left( \epsilon^\alpha \overline{c}_\alpha - \tfrac{1}{2}\kappa^{a b} \overline{\phi}_a \overline{\phi}_b \right) dvol_\sigma + d\left( \epsilon^\alpha R^{a \mu}_\alpha \right) \iota_{\partial_\mu} dvol_\Sigma \end{aligned}

(Barnich-Brandt-Henneaux 94, p. 20)

It may be useful to organize this expression into the s+ds+d-bicomplex like so:

{K} d {dK+ϵ αR α aμδ ELLδϕ a} d {dJ vι vδ ELL=0} s s ϵ αR α aμϕ¯ aι μdvol Σ d {d(ϵ αR α aμϕ¯ a)ι μdvol Σ+(R α aϵ α+R α aμdϵ αdx μ+κ abδ ELLδϕ a)ϕ¯ advol Σ} s (ϵ αc¯ α+12κ abϕ¯ aϕ¯ b)dvol Σ \array{ \{K\} &\overset{d}{\longrightarrow}& \{ d K + \epsilon^\alpha R^{a \mu}_\alpha \frac{\delta_{EL}\mathbf{L}}{ \delta \phi^a} \} &\overset{d}{\longrightarrow}& \{ \overset{= 0}{\overbrace{ d J_v - \iota_v \delta_{EL}\mathbf{L} }} \} \\ && \mathllap{s}\uparrow && \uparrow\mathrlap{-s} \\ && \epsilon^\alpha R^{a \mu}_\alpha \overline{\phi}_a \iota_{\partial_\mu} dvol_\Sigma &\underset{d}{\longrightarrow}& \left\{ d\left( \epsilon^\alpha R^{a \mu}_\alpha \overline{\phi}_a \right) \iota_{\partial_\mu} dvol_\Sigma + \left( R^a_\alpha \epsilon^\alpha + R^{a \mu}_\alpha \frac{d \epsilon^\alpha}{d x^\mu} + \kappa^{a b} \frac{\delta_{EL} L }{ \delta \phi^a } \right) \overline{\phi}_a \, dvol_\Sigma \right\} \\ && && \uparrow\mathrlap{-s} \\ && && \left( - \epsilon^\alpha \overline{c}_\alpha + \tfrac{1}{2}\kappa^{a b } \overline{\phi}_a \overline{\phi}_b \right) dvol_\Sigma }

References

Review includes

The general theory is discussed in

Details of the local antibracket are discussed in

Application to gravity and/or Yang-Mills theory (Einstein-Yang-Mills theory) is discussed in

Last revised on August 1, 2018 at 07:54:51. See the history of this page for a list of all contributions to it.