Matrix models are physical models in which the dynamical quantities are square matrices (in certain class of matrices, e.g. hermitian), in other words, a Lagrangian/Hamiltonian depends on matrix quantities and is usually taken at the limit when the size of matrix tends to infinity.
Matrix models are studied mainly in the context of statistical mechanics (see random matrix theory) or in quantum field theory.
Fredholm determinant, random matrix theory, determinental process?, Kontsevich matrix model?, large N limit
Matrix models that have been argued to capture D-brane dynamics and nonperturbative effects in string theory include
First inkling of matrix models from the large N limit of QCD:
Tohru Eguchi, Hikaru Kawai, Reduction of Dynamical Degrees of Freedom in the Large- Gauge Theory, Phys. Rev. Lett. 48, 1063 (1982) (spire:176459, doi:10.1103/PhysRevLett.48.1063)
A. Gonzalez-Arroyo, M. Okawa, A twisted model for large lattice gauge theory, Physics Letters B Volume 120, Issues 1–3, 6 January 1983, Pages 174-178 (doi:10.1016/0370-2693(83)90647-0)
A. Gonzalez-Arroyo, M. Okawa, Twisted-Eguchi-Kawai model: A reduced model for large- lattice gauge theory, Phys. Rev. D 27, 2397 (1983) (doi:10.1103/PhysRevD.27.2397)
On matrix models for D=2 quantum gravity:
Edouard Brézin, Jean Zinn-Justin: Renormalization Group Approach to Matrix Models, Phys. Lett. B 288 (1992) 54-58 [arXiv:hep-th/9206035, doi:10.1016/0370-2693(92)91953-7]
Astrid Eichhorn, Tim Koslowski: Continuum limit in matrix models for quantum gravity from the Functional Renormalization Group, Phys. Rev. D 88 (2013) 084016 [arXiv:1309.1690, doi:10.1103/PhysRevD.88.084016]
For references on the BFSS-, IKKT- and BMN matrix models see there.
Discussion of the integer quantum Hall effect via a Brillouin torus with noncommutative geometry and using the Connes-Chern character:
Generalization of BvESB94 to the fractional quantum Hall effect:
See also exposition in:
Discussion of the fractional quantum Hall effect via abelian but noncommutative (matrix model-)Chern-Simons theory:
Leonard Susskind: The Quantum Hall Fluid and Non-Commutative Chern Simons Theory [arXiv:hep-th/0101029]
Simeon Hellerman, Leonard Susskind: Realizing the Quantum Hall System in String Theory [arXiv:hep-th/0107200]
(relating this to M5-branes via the BFSS matrix model)
Alexios P. Polychronakos: Quantum Hall states as matrix Chern-Simons theory, JHEP 0104:011 (2001) [doi:10.1088/1126-6708/2001/04/011, arXiv:hep-th/0103013]
Simeon Hellerman, Mark Van Raamsdonk: Quantum Hall Physics = Noncommutative Field Theory, JHEP 0110:039 (2001) [doi:10.1088/1126-6708/2001/10/039, arXiv:hep-th/0103179]
Eduardo Fradkin, Vishnu Jejjala, Robert G. Leigh: Non-commutative Chern-Simons for the Quantum Hall System and Duality, Nucl. Phys. B 642 (2002) 483-500 [doi:10.1016/S0550-3213(02)00616-8, arXiv:cond-mat/0205653]
Andrea Cappelli, Ivan D. Rodriguez: Matrix Effective Theories of the Fractional Quantum Hall effect, J. Phys. A 42 (2009) 304006 [doi:10.1088/1751-8113/42/30/304006, arXiv:0902.0765]
Zhihuan Dong, T. Senthil: Non-commutative field theory and composite Fermi Liquids in some quantum Hall systems, Phys. Rev. B 102 (2020) 205126 [doi:10.1103/PhysRevB.102.205126, arXiv:2006.01282]
Discussion of topological recursion for matrix models originates with
See also
Raghav G. Jha, Introduction to Monte Carlo for Matrix Models (arXiv:2111.02410)
Chong-Sun Chu, A Matrix Model Proposal for Quantum Gravity and the Quantum Mechanics of Black Holes [arXiv:2406.01466]
Last revised on November 30, 2024 at 16:44:59. See the history of this page for a list of all contributions to it.