symmetric monoidal (∞,1)-category of spectra
algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)
quantum mechanical system, quantum probability
interacting field quantization
The Monster vertex algebra is a super vertex operator algebra whose group of automorphisms of a super VOA is the monster group. (Frenkel-Lepowski-Meurman 89, Griess-Lam 11).
Richard Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, PNAS May 1, 1986 83 (10) 3068-3071 (doi:10.1073/pnas.83.10.3068, pdf)
Lance Dixon, Paul Ginsparg, Jeffrey Harvey, Beauty and the Beast: Superconformal Symmetry in a Monster Module, Commun, Math. Phys. 119, 221-241 (1988) (euclid:1104162400, doi:10.1007/BF01217740, pdf)
Igor Frenkel, James Lepowsky, Arne Meurman, Vertex operator algebras and the monster, Pure and Applied Mathematics 134, Academic Press, New York 1989. liv+508 pp. MR0996026
Richard Borcherds,John Conway, L. Queen, N. J. A. Sloane, A Monster Lie Algebra?, In: Sphere Packings, Lattices and Groups, Grundlehren der mathematischen Wissenschaften (A Series of Comprehensive Studies in Mathematics), vol 290. Springer 1993 (doi:10.1007/978-1-4757-2249-9_30, pdf)
Robert Griess Jr., Ching Hung Lam, A new existence proof of the Monster by VOA theory (arXiv:1103.1414)
Lisa Carbone, Elizabeth Jurisich, Scott H. Murray, Constructing a Lie group analog for the Monster Lie algebra (arXiv:2002.06658)
See also
Wikipedia, Monster vertex algebra
Wikipedia, Monster Lie algebra
Relation to quantum error correction:
Possible relation to bosonic M-theory:
Discussion in terms of conformal nets:
Last revised on April 28, 2023 at 09:42:48. See the history of this page for a list of all contributions to it.