nLab infinity-group

Redirected from "pointed connected type".
Contents

Context

Group Theory

(,1)(\infty,1)-Category theory

Contents

Definition

An ∞-group is a group object in ∞Grpd.

Equivalently (by the delooping hypothesis) it is a pointed connected \infty-groupoid.

Under the identification of ∞Grpd with Top this is known as a grouplike A A_\infty-space, for instance.

An \infty-Lie group is accordingly a group object in ∞-Lie groupoids. And so on.

Properties

For details see groupoid object in an (∞,1)-category.

Models

By

(∞,1)-operad∞-algebragrouplike versionin Topgenerally
A-∞ operadA-∞ algebra∞-groupA-∞ space, e.g. loop spaceloop space object
E-k operadE-k algebrak-monoidal ∞-groupiterated loop spaceiterated loop space object
E-∞ operadE-∞ algebraabelian ∞-groupE-∞ space, if grouplike: infinite loop space \simeq ∞-spaceinfinite loop space object
\simeq connective spectrum\simeq connective spectrum object
stabilizationspectrumspectrum object

References

(For more see also the references at infinity-action.)

A standard textbook reference on \infty-groups in the classical model structure on simplicial sets is

Group objects in (infinity,1)-categories are the topic of

Discussion from the point of view of category objects in an (∞,1)-category is in

The homotopy theory of \infty-groups that are n-connected and r-truncated for nrn \leq r is discussed in

  • A.R. Garzón, J.G. Miranda, Serre homotopy theory in subcategories of simplicial groups, Journal of Pure and Applied Algebra Volume 147, Issue 2, 24 March 2000, Pages 107-123 (

    /S0022-4049(98)00143-1“>doi:10.1016/S0022-4049(98)00143-1</a>)

Discussion of aspects of ordinary group theory in relation to \infty-group theory:

Discussion of \infty -groups in homotopy type theory:

category: ∞-groupoid

Last revised on January 2, 2025 at 08:00:16. See the history of this page for a list of all contributions to it.