nLab stable Yang-Mills-Higgs pair

Contents

Context

Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)

Introduction

Concepts

field theory:

Lagrangian field theory

quantization

quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization

renormalization

Theorems

States and observables

Operator algebra

Local QFT

Perturbative QFT

Differential cohomology

Contents

Idea

A (weakly) stable Yang-Mills-Higgs connection (or (weakly) stable YMH connection) is a Yang-Mills-Higgs connection, around which the Yang-Mills-Higgs action functional is positive or even strictly positively curved:

Yang-Mills-Higgs connections are critical points of the Yang-Mills-Higgs action functional, where the first variational derivative vanishes. For (weakly) stable Yang-Mills connections, the second derivative is additionally required to be positive or even strictly positive.

Basics

Consider

  • GG a Lie group and 𝔤\mathfrak{g} its Lie algebra,

  • BB an orientable Riemannian manifold with Riemannian metric gg and volume form vol g\operatorname{vol}_g,

  • EBE\twoheadrightarrow B a principal G G -bundle and Ad(E)E× G𝔤B\operatorname{Ad}(E)\coloneqq E\times_G\mathfrak{g}\twoheadrightarrow B its adjoint bundle,

  • ΦΩ Ad 0(E,𝔤)Ω 0(B,Ad(E))Γ (B,Ad(E))\Phi\in\Omega_{\operatorname{Ad}}^0(E,\mathfrak{g})\cong\Omega^0(B,\operatorname{Ad}(E))\cong\Gamma^\infty(B,\Ad(E)) a smooth section,

  • AΩ Ad 1(E,𝔤)Ω 1(B,Ad(E))A\in\Omega_{\operatorname{Ad}}^1(E,\mathfrak{g})\cong\Omega^1(B,\operatorname{Ad}(E)) a principal connection,

  • F AdA+12[AA]Ω Ad 2(E,𝔤)Ω 2(B,Ad(E))F_A\coloneqq\mathrm{d}A+\frac{1}{2}[A\wedge A]\in\Omega_{\operatorname{Ad}}^2(E,\mathfrak{g})\cong\Omega^2(B,\operatorname{Ad}(E)) its curvature. If AA is a Yang-Mills connection, F AF_A is also called Yang-Mills field.

Definition

The Yang-Mills-Higgs action functional (or YMH action functional) is given by:

YMH:Ω 1(B,Ad(E))×Γ (B,Ad(E)),YMH(A,Φ) BF A 2+d AΦ 2dvol g. \operatorname{YMH}\colon \Omega^1(B,\operatorname{Ad}(E))\times\Gamma^\infty(B,\operatorname{Ad}(E))\rightarrow\mathbb{R}, \operatorname{YMH}(A,\Phi) \coloneqq\int_B\|F_A\|^2+\|\mathrm{d}_A\Phi\|^2\mathrm{d}\operatorname{vol}_g.

AA and Φ\Phi are called a stable Yang-Mills-Higgs pair (or stable YMH pair) iff:

d 2dt 2YMH(α(t),φ(t))| t=0>0 \frac{\mathrm{d}^2}{\mathrm{d}t^2}\operatorname{YMH}(\alpha(t),\varphi(t))\vert_{t=0} \gt 0

for all smooth families α:(ε,ε)Ω 1(B,Ad(E))\alpha\colon(-\varepsilon,\varepsilon)\rightarrow\Omega^1(B,\operatorname{Ad}(E)) and φ:(ε,ε)Γ (B,Ad(E))\varphi\colon(-\varepsilon,\varepsilon)\rightarrow\Gamma^\infty(B,\operatorname{Ad}(E)) with α(0)=A\alpha(0)=A and φ(0)=Φ\varphi(0)=\Phi. It is called weakly stable if only 0\geq 0 holds. For comparison, the condition for a Yang-Mills-Higgs pair (or YMH pair) is:

ddtYMH(α(t),φ(t))| t=0=0. \frac{\mathrm{d}}{\mathrm{d}t}\operatorname{YMH}(\alpha(t),\varphi(t))\vert_{t=0} =0.

(Hu & Hu 15, Cheng 21, Definition 3.1, Han, Jin & Wen 23)

Properties

Theorem

Let (A,Φ)(A,\Phi) be a weakly stable YMH pair on S nS^n.

  • If n=4n=4, then d AF A=0\mathrm{d}_A\star F_A=0 (meaning AA is a YM connection), d AΦ=0\mathrm{d}_A\Phi=0 and Φ=1\|\Phi\|=1.
  • If n5n\geq 5, then F A=0F_A=0 (meaning AA is flat), d AΦ=0\mathrm{d}_A\Phi=0 and Φ=1\|\Phi\|=1.

(Han, Jin & Wen 23)

References

  • Zhi Hu and Sen Hu, Degenerate and Stable Yang-Mills-Higgs Pair (2015), arxiv:1502.01791
  • Da Rong Cheng, Stable Solutions to the Abelian Yang–Mills–Higgs Equations on S 2S^2 and T 2T^2 (2021), Journal of Geometric Analysis 31, pp. 9551–9572, doi:10.1007/s12220-021-00619-y
  • Xiaoli Han, Xishen Jin and Yang Wen; Stability and energy identity for Yang-Mills-Higgs pairs (2023), Journal of Mathematical Physics 64, arxiv:2303.00270

See also

References

See also:

Last revised on November 25, 2024 at 17:28:40. See the history of this page for a list of all contributions to it.