nLab Yang-Mills-Higgs equations

Redirected from "Yang-Mills-Higgs connection".
Contents

Context

Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)

Introduction

Concepts

field theory:

Lagrangian field theory

quantization

quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization

renormalization

Theorems

States and observables

Operator algebra

Local QFT

Perturbative QFT

Differential cohomology

Contents

Idea

The Yang-Mills-Higgs equations (or YMH equations) arise from a generalization of the Yang-Mills action functional with a section, which in physics represents the Higgs field.

Yang-Mills-Higgs action functional

Let GG be a compact Lie group with Lie algebra 𝔤\mathfrak{g} and EBE\twoheadrightarrow B be a principal G G -bundle with a compact orientable Riemannian manifold BB. Let Ad(E)E× G𝔤\operatorname{Ad}(E)\coloneqq E\times_G\mathfrak{g} be its adjoint bundle. The Yang-Mills-Higgs action functional (or YMH action functional) is given by:

YMH:Ω 1(B,Ad(E))×Γ (B,Ad(E)),YMH(A,Φ) BF A 2+d AΦ 2dvol g. \operatorname{YMH}\colon \Omega^1(B,\operatorname{Ad}(E))\times\Gamma^\infty(B,\operatorname{Ad}(E))\rightarrow\mathbb{R}, \operatorname{YMH}(A,\Phi) \coloneqq\int_B\|F_A\|^2+\|\mathrm{d}_A\Phi\|^2\mathrm{d}\vol_g.

(Taubes 82a, Equation (2.1))

Yang-Mills-Higgs equations and pairs

A connection AΩ 1(B,Ad(E))A\in\Omega^1(B,\operatorname{Ad}(E)) and a section ΦΓ (B,Ad(E))\Phi\in\Gamma^\infty(B,\operatorname{Ad}(E)) are called Yang-Mills-Higgs pair (or YMH pair) if they are a critical point of the Yang-Mills-Higgs action functional, hence if:

ddtYMH(α(t),φ(t))| t=0=0 \frac{\mathrm{d}}{\mathrm{d}t}\operatorname{YMH}(\alpha(t),\varphi(t))\vert_{t=0} =0

for all smooth families α:(ε,ε)Ω 1(B,Ad(E))\alpha\colon(-\varepsilon,\varepsilon)\rightarrow\Omega^1(B,\operatorname{Ad}(E)) with α(0)=A\alpha(0)=A and φ:(ε,ε)Γ (B,Ad(E))\varphi\colon(-\varepsilon,\varepsilon)\rightarrow\Gamma^\infty(B,\operatorname{Ad}(E)) with φ(0)=Φ\varphi(0)=\Phi.

This is the case iff the Yang-Mills-Higgs equations (or YMH equations) are fulfilled:

d AF A+[Φ,d AΦ]=0; \mathrm{d}_A\star F_A +\star[\Phi,\mathrm{d}_A\Phi] =0;
d Ad AΦ=0. \mathrm{d}_A\star\mathrm{d}_A\Phi =0.

(Taubes 82a, Equations (2.2a) and (2.2b), Taubes 84, Equation (1), Taubes 85, Equations (A.1.1a) and (A.1.1b))

(Taubes 84, Equation (1) is missing the second Hodge star operator in the first Yang-Mills-Higgs equation.)

Furthermore the following Bianchi identities hold:

d AF A=0; \mathrm{d}_A F_A =0;
d Ad AΦ+[Φ,F A]=0. \mathrm{d}_A\mathrm{d}_A\Phi +[\Phi,F_A] =0.

(Taubes 82a, Equations (2.2c) and (2.2d))

Furthermore the Higgs field is required to vanish at infinity:

lim |x||Φ|(x)=0. \lim_{|x|\rightarrow\infty}|\Phi|(x) =0.

(Taubes 82a, Equation (2.3))

A solution (A,Φ)(A,\Phi) of the Yang-Mills-Higgs equations is called Yang-Mills-Higgs pair.

Using 2=(1) k(nk)\star^2=(-1)^{k(n-k)} and δ A=(1) n(k+1)+1d A\delta_A=(-1)^{n(k+1)+1}\star\mathrm{d}_A\star when applied to kk-forms, the first Yang-Mills-Higgs equation can also be rewritten as:

δ AF A+[Φ,d AΦ]=0. \delta_A F_A +[\Phi,\mathrm{d}_A\Phi] =0.

The second Yang-Mills-Higgs equation can also be rewritten as:

δ Ad AΦ=0. \delta_A\mathrm{d}_A\Phi =0.

Properties

Lemma

AΩ 1(B,Ad(E))A\in\Omega^1(B,\operatorname{Ad}(E)) is a Yang-Mills connection iff (A,0)Ω 1(B,Ad(E))×Γ (B,Ad(E))(A,0)\in\Omega^1(B,\operatorname{Ad}(E))\times\Gamma^\infty(B,\operatorname{Ad}(E)) is a Yang-Mills-Higgs pair.

Abelian Yang-Mills-Higgs equation

For an abelian Lie group as structure group, its Lie algebra is also abelian and hence all Lie brackets vanish and makes the Yang-Mills-Higgs equations into:

ddA=0; \mathrm{d}\star\mathrm{d}A =0;
ddΦ=0. \mathrm{d}\star\mathrm{d}\Phi =0.

Connection with generalized Laplace equation

Let:

Δ Aδ Ad A+d Aδ A:Ω k(B,Ad(E))Ω k(B,Ad(E)) \Delta_A \coloneqq\delta_A\mathrm{d}_A +\mathrm{d}_A\delta_A\colon \Omega^k(B,\operatorname{Ad}(E))\rightarrow\Omega^k(B,\operatorname{Ad}(E))

be a generalized Laplace operator.

The Bianchi identity d AF A=0\mathrm{d}_A F_A=0 and the first Yang-Mills-Higgs equation δ AF A=[Φ,d AΦ]\delta_A F_A=-[\Phi,\mathrm{d}_A\Phi] combine to:

Δ AF A=d A[Φ,d AΦ]. \Delta_A F_A =-\mathrm{d}_A[\Phi,\mathrm{d}_A\Phi].

The trivial identity δ AΦ=0\delta_A\Phi=0 (since Φ\Phi is a 00-form whose degree cannot be lowered any further) and the second Yang-Mills-Higgs equation δ Ad AΦ=0\delta_A\mathrm{d}_A\Phi=0 combine to:

Δ AΦ=0. \Delta_A\Phi =0.

References

See also:

Last revised on November 25, 2024 at 13:24:42. See the history of this page for a list of all contributions to it.