nLab tube algebra

Contents

Context

Monoidal categories

monoidal categories

With braiding

With duals for objects

With duals for morphisms

With traces

Closed structure

Special sorts of products

Semisimplicity

Morphisms

Internal monoids

Examples

Theorems

In higher category theory

Contents

Definition

Let π’ž\mathcal{C} be a fusion category. The vector space

Tube(π’ž)≔⨁ a,b,cβˆˆβ„π’ž(cβŠ—a,bβŠ—c), Tube (\mathcal{C}) \coloneqq \bigoplus_{a,b,c \in \mathcal{I}} \mathcal{C}(c \otimes a, b \otimes c),

for ℐ\mathcal{I} the set of simple objects of π’ž\mathcal{C}, has an algebra structure. This is called the Tube (or Ocneanu) algebra. For Ο΅βˆˆπ’ž(xβŠ—a,aβŠ—y)\epsilon \in \mathcal{C}(x \otimes a, a \otimes y), Ο΅β€²βˆˆπ’ž(xβ€²βŠ—aβ€²,aβ€²βŠ—yβ€²)\epsilon' \in \mathcal{C}(x' \otimes a', a' \otimes y'), their product is given by

Ο΅β‹…Ο΅β€²=Ξ΄ y,xβ€²βˆ‘ b,Ξ±(Ξ±βŠ—id yβ€²)(id aβŠ—Ο΅β€²)(Ο΅βŠ—id aβ€²)(id xβŠ—Ξ± *), \epsilon \cdot \epsilon' = \delta_{y,x'} \sum_{b,\alpha} (\alpha \otimes \text{id}_{y'}) (\text{id}_a \otimes \epsilon') (\epsilon \otimes \text{id}_{a'}) (\text{id}_x \otimes \alpha^* ),

for α∈Hom(aβŠ—aβ€²,b)\alpha \in \text{Hom}(a \otimes a', b) (Ocneanu 94). It is furthermore a C-star-algebra (Ocneanu 01), and even a weak Hopf algebra (MΓΌger 03, Jia et al 24).

Properties

Relation to the Drinfeld center

The category of representations of the tube algebra Tube(π’ž)Tube(\mathcal{C}) of π’ž\mathcal{C} is equivalent to the Drinfeld center 𝒡(π’ž)\mathcal{Z}(\mathcal{C}) of π’ž\mathcal{C} (MΓΌger 03).

Relation to action on Hilbert spaces

In the context of a 2d CFT, twist fields are thought of as elements of a twist Hilbert space β„‹ a\mathcal{H}_a for aβˆˆβ„a \in \mathcal{I}. The action of bβˆˆβ„b\in \mathcal{I} (essentially by conjugation) is described by an element xβˆˆπ’ž(bβŠ—a,cβŠ—b)x\in \mathcal{C}( b\otimes a, c \otimes b). Thus, the tube algebra Tube(π’ž)Tube(\mathcal{C}) acts on the total Hilbert space β„‹=⨁ aβˆˆβ„β„‹ a\mathcal{H} = \bigoplus_{a\in \mathcal{I}} \mathcal{H}_a, meaning the latter is a representation of the tube algebra, and by the equivalence above is identified with an object in the Drinfeld center 𝒡(π’ž)\mathcal{Z}(\mathcal{C}) of π’ž\mathcal{C}. See e.g. (Lin et al. 23).

References

General:

  • Adrian Ocneanu. Chirality for operator algebras. Subfactors (Kyuzeso, 1993) 39 (1994). (pdf).

  • Adrian Ocneanu. Operator algebras, topology and subgroups of quantum symmetry–construction of subgroups of quantum groups–. Taniguchi Conference on Mathematics Nara’98. Vol. 31. Mathematical Society of Japan, 2001. (doi).

  • Michael MΓΌger. From subfactors to categories and topology II: The quantum double of tensor categories and subfactors. Journal of Pure and Applied Algebra 180.1-2 (2003): 159-219. (doi00248-7)).

On its structure

  • Zhian Jia, Sheng Tan, and Dagomir Kaszlikowski. Weak Hopf symmetry and tube algebra of the generalized multifusion string-net model. Journal of High Energy Physics 2024.7 (2024): 1-63. (doi207)).

As encoding actions on Hilbert spaces

  • Ying-Hsuan Lin, Masaki Okada, Sahand Seifnashri, and Yuji Tachikawa. Asymptotic density of states in 2d CFTs with non-invertible symmetries. Journal of High Energy Physics 2023, no. 3 (2023): 1-43. (doi094)).

  • Yichul Choi, Brandon C. Rayhaun, Yunqin Zheng. Generalized Tube Algebras, Symmetry-Resolved Partition Functions, and Twisted Boundary States (2024). (arXiv:2409.02159).

Last revised on April 14, 2025 at 17:03:28. See the history of this page for a list of all contributions to it.