Definitions
Transfors between 2-categories
Morphisms in 2-categories
Structures in 2-categories
Limits in 2-categories
Structures on 2-categories
homotopy hypothesis-theorem
delooping hypothesis-theorem
stabilization hypothesis-theorem
A pseudofunctor is a specific algebraic notion of weak 2-functor between bicategories (including strict 2-categories), i.e. a 2-functor which preserves composition and identities of 1-morphisms only up to coherent specified 2-isomorphism. (In contrast to strict 2-functors.)
In general, there is not much reason to say “pseudofunctor” instead of “functor,” since by far the most important type of functor between arbitrary bicategories is weak. However, if the domain and codomain are known to be strict 2-categories (including ordinary -categories), it can be helpful to say “pseudofunctor” or “weak functor” to emphasize that it is not a strict 2-functor. Note that if the codomain is a -category, then there is no difference.
Pseudo or weak functors are also to be distinguished from lax functors and oplax functors, which preserve identities and composition only up to a transformation in one direction or the other, which may be non-invertible.
An older terminology, which should probably be avoided at all costs, uses “homomorphism of bicategories” for a weak functor and “morphism of bicategories” for a lax one.
Given bicategories and , a pseudofunctor (or weak -functor, or just functor) consists of:
and
commute.
commutes.
A pseudofunctor is strict if the structural isomorphisms for identities of 1-cells and composites are identity 2-cells.
The composite of two pseudofunctors , is defined as follows:
Coherence diagrams commute as a consequence of the coherence diagrams for and commuting.
If we remove the requirement that and be invertible, then we have the definition of lax functor. Thus, a pseudofunctor may be defined as a lax functor whose comparison constraints are invertible.
If in the definition of lax functor we reverse the direction of the constraints, then we have an oplax functor. Thus, if we consider the inverses of the constraints of a pseudofunctor, we obtain an oplax functor. Because there is little difference between specifying an invertible morphism and specifying its invertible inverse, one could equally well define a pseudofunctor to be an oplax functor whose constraints are invertible (i.e. reverse the direction of the isomorphisms and above), and in the literature one sometimes finds this definition instead.
Of course, in particular applications, one direction or the other may be slightly more “natural”. For instance, when a Grothendieck fibration gives rise to a pseudofunctor , the natural comparison maps (induced by the universal property of cartesian arrows) go in the “lax direction”. Dually, when a Grothendieck opfibration gives rise to a pseudofunctor , the natural comparison maps go in the “oplax direction”.
For a strict 2-category, there is a universal procedure for replacing pseudofunctors with strict 2-functors , where “universal” is in the following sense:
For any pseudofunctor , there is a strict 2-functor and a pseudonatural equivalence . Moreover, for any strict 2-functor , composing with yields an isomorphism between the category of pseudonatural transformations and modifications between them, and the category of strict natural transformations and modifications between them.
For each object of , define to be the category whose objects are pairs with in and , and whose morphisms are morphisms in . For in , the functor takes to ; notice preserves compositions strictly since composition in is strictly associative. (Strictly speaking we have only defined the functor at the object level. However, the extension to morphisms is the obvious one, where
preserves compositions by naturality of the structural constraints .) Similarly, for 2-cells , the natural transformation is defined by taking its component at an object to be given by pasting in the first component: .
One easily checks that is pseudonaturally equivalent to …
The construction of the strictification is a special case of a general strictification construction due to Power. Later Steve Lack showed that the strictifications obtained from Power’s coherence theorem always have a universal property analogous to that of the result above.
We also have the following result:
Given bicategories and , for any pseudofunctor , there is a pseudofunctor that strictly preserves identity 1-morphisms, and a pseudonatural equivalence .
This is Proposition 5.2 of Lack and Paoli. Pseudofunctors that strictly preserve identity 1-morphisms are called normal.
Historically the term ‘pseudofunctor’ was conceived by Grothendieck who weakened, around 1957, the concept of a contravariant functor from a 1-category to Cat, by effectively replacing the -category Cat by the 2-category and allowing (contravariant) functoriality up to coherent -cells. This was recorded in his Bourbaki seminar on descent via pseudofunctors. Later in SGA1 Grothendieck (with the assistance of Pierre Gabriel) replaced pseudofunctors in the treatment of descent by more invariant fibered categories. Benabou, in his 1967 treatise introducing bicategories, generalized the pseudofunctors of Grothendieck to pseudofunctors between arbitrary bicategories but under the name ‘homomorphism of bicategories’.
2-functor / pseudofunctor
The notion of pseudo-functors from a 1-category to the 2-category Cat originates with:
(where it is still called “fibered categories”, a term that eventually came to refer to the equivalent incarnation of pseudofunctors as their Grothendieck constructions).
Review:
The general notion of pseudo-functors as 2-functors between 2-categories
Jean Bénabou, Introduction to Bicategories, Lecture Notes in Mathematics 47 Springer (1967), pp.1-77 [doi:10.1007/BFb0074299]
Niles Johnson, Donald Yau, 2-Dimensional Categories, Oxford University Press 2021 (arXiv:2002.06055, doi:10.1093/oso/9780198871378.001.0001)
See also:
Stephen Lack, Codescent objects and coherence, JPAA Vol. 175 (2002), 223-241. (web)
Stephen Lack and Simona Paoli, 2-nerves for bicategories, -Theory 38 (2008), 153-175. (arxiv).
Last revised on November 24, 2023 at 12:18:25. See the history of this page for a list of all contributions to it.