nLab Habiro ring

Context

Arithmetic

\infty-Chern-Simons theory

∞-Chern-Weil theory

∞-Chern-Simons theory

∞-Wess-Zumino-Witten theory

Ingredients

Definition

Examples

Contents

Idea

Roughly, the Habiro ring is a ring of functions defined on formal neighborhoods of all roots of unity simultaneously, satisfying appropriate gluing conditions.

Definition

The Habiro ring over \mathbb{Z} is defined as an inverse limit:

lim n[q]/((q;q) n), \mathcal{H}_{\mathbb{Z}} \;\simeq\; \lim_n \, \mathbb{Z}[q]/\big( (q;q)_n \big) \,,

where (q;q) n= i=1 n(1q i)(q;q)_n = \prod_{i=1}^n(1-q^i), or equivalently, an inverse limit:

lim n,m[q]/((1q n) m), \mathcal{H}_{\mathbb{Z}} \;\simeq\; \lim_{n,m} \, \mathbb{Z}[q]/\big((1-q^n)^m\big) \,,

where

(1)(n 0,m 0)(n 1,m 1):m 0m 1n 0|n 1. (n_0,m_0) \le (n_1, m_1) \;\;\;\colon\Leftrightarrow\;\;\; m_0\le m_1 \;\wedge\; n_0|n_1 \,.

Properties

For any root of unity ω\omega and f f \in \mathcal{H}_{\mathbb{Z}}, one defines f ω(x)f(ω+x)[ω][[x]]f_\omega(x) \coloneqq f(\omega + x) \in \mathbb{Z}[\omega][[x]]. These satisfy compatibility conditions for varying ω\omega.

References

Last revised on April 29, 2025 at 18:18:17. See the history of this page for a list of all contributions to it.