For semisimple Lie algebra targets
For discrete group targets
For discrete 2-group targets
For Lie 2-algebra targets
For targets extending the super Poincare Lie algebra
(such as the supergravity Lie 3-algebra, the supergravity Lie 6-algebra)
Chern-Simons-supergravity
for higher abelian targets
for symplectic Lie n-algebroid targets
for the -structure on the BRST complex of the closed string:
higher dimensional Chern-Simons theory
topological AdS7/CFT6-sector
functorial quantum field theory
Reshetikhin?Turaev model? / Chern-Simons theory
FQFT and cohomology
physics, mathematical physics, philosophy of physics
theory (physics), model (physics)
experiment, measurement, computable physics
Axiomatizations
Tools
Structural phenomena
Types of quantum field thories
What is called the A-model topological string is the 2-dimensional topological conformal field theory corresponding to the Calabi–Yau category called the Fukaya category of a symplectic manifold . This is the Poisson sigma-model of the underlying Poisson manifold after appropriate gauge fixing (AKSZ 97, p 19). The A-model on is effectively the Gromov–Witten theory of .
The A-model arose in formal physics from considerations of superstring-propagation on Calabi-Yau spaces: it may be motivated by considering the vertex operator algebra of the 2dSCFT given by the supersymmetric sigma-model with target space and then deforming it such that one of the super-Virasoro generators squares to . The resulting “topologically twisted” algebra may then be read as being the BRST complex of a TCFT.
One can also define an A-model for Landau–Ginzburg models. The category of D-branes for the corresponding open string theory is given by the Fukaya–Seidel category.
By homological mirror symmetry, the A-model is dual to the B-model.
The action functional of the A-model is that associated by AKSZ theory to a Lagrangian submanifold in a target symplectic Lie n-algebroid which is the Poisson Lie algebroid of a symplectic manifold.
See the references on Lagrangian formulation.
On coisotropic branes in symplectic target manifolds that arise by complexification of phase spaces, the boundary path integral of the A-model computes the quantization of that phase space. For details see
and
The second quantization effective background field theory defined by the perturbation series of the A-model string has been argued to be Chern-Simons theory. (Witten 92, Costello 06)
For more on this see at TCFT – Worldsheet and effective background theories. A related mechanism is that of world sheets for world sheets.
gauge theory induced via AdS-CFT correspondence
M-theory perspective via AdS7-CFT6 | F-theory perspective |
---|---|
11d supergravity/M-theory | |
Kaluza-Klein compactification on | compactificationon elliptic fibration followed by T-duality |
7-dimensional supergravity | |
topological sector | |
7-dimensional Chern-Simons theory | |
AdS7-CFT6 holographic duality | |
6d (2,0)-superconformal QFT on the M5-brane with conformal invariance | M5-brane worldvolume theory |
KK-compactification on Riemann surface | double dimensional reduction on M-theory/F-theory elliptic fibration |
N=2 D=4 super Yang-Mills theory with Montonen-Olive S-duality invariance; AGT correspondence | D3-brane worldvolume theory with type IIB S-duality |
topological twist | |
topologically twisted N=2 D=4 super Yang-Mills theory | |
KK-compactification on Riemann surface | |
A-model on , Donaldson theory |
The A-model was first conceived in
An early review is in
The motivation from the point of view of string theory is reviewed for instance in
A summary of these two reviews is in
That the A-model Lagrangian arises in AKSZ theory by gauge fixing the Poisson sigma-model was observed in
with more details in
Review and further discussion includes
Also
Discussion of how the second quantization effective field theory given by the A-model perturbation series is Chern-Simons theory is in
formalizing at least aspects of the observations in
Last revised on May 6, 2021 at 22:32:50. See the history of this page for a list of all contributions to it.