Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
The Lorentz group is the orthogonal group for an invariant bilinear form of signature , .
In physics, in the theory of relativity the Lorentz group acts canonically as the group of linear isometries of Minkowski spacetime preserving a chosen basepoint. This is called the action by Lorentz transformations.
The elements in the Lorentz group in the image of the special orthogonal group are rotations in space. The further elements in the special Lorentz group , which mathematically are “hyperbolic rotations” in a space-time plane, are called boosts in physics.
One distinguishes the following further subgroups of the Lorentz group :
the proper Lorentz group is the subgroup of elements which have determinant +1 (as elements of the general linear group);
the proper orthochronous (or restricted) Lorentz group is the further subgroup of elements which do not act by reflection along the timelike axis.
As a smooth manifold, the Lorentz group has four connected components. The connected component of the identity is the the proper orthochronous group . The other three components are
,
where, as matrices
is the operation of point reflection at the origin in space, where
is the operation of reflection in time and hence where
is point reflection in spacetime.
While the proper orthochronous Lorentz group is connected, it is not simply connected. Its universal double cover is the Lorentzian spin group .
quantum group version: quantum Lorentz group
Named after Hendrik Lorentz. (Not to be confused with Ludvik Lorenz, whose name is attached to the Lorenz gauge.)
Last revised on September 24, 2024 at 09:53:23. See the history of this page for a list of all contributions to it.