nLab
W algebra
Context
Algebra
algebra , higher algebra
universal algebra
monoid , semigroup , quasigroup
nonassociative algebra
associative unital algebra
commutative algebra
Lie algebra , Jordan algebra
Leibniz algebra , pre-Lie algebra
Poisson algebra , Frobenius algebra
lattice , frame , quantale
Boolean ring , Heyting algebra
commutator , center
monad , comonad
distributive law
Group theory
Ring theory
Module theory
Contents
Idea
A W algebra is a higher spin extension of the Virasoro algebra . It is an extended symmetry algebra in conformal field theory .
References
An early survey is
Peter Bouwknegt , Kareljan Schoutens, W symmetry in conformal field theory , Phys. Rep. 223 :4 (1993) 183–276 doi
Peter Bouwknegt , Jim McCarthy, Krzysztof Pilch , The W 3 W_3 algebra: modules, semi-infinite cohomology, and BV algebras , Lec. Notes in Phys. 42 , Springer 1996 (doi:10.1007/978-3-540-68719-1 )
Wikipedia, W-algebra
Relation to Jordan algebra is discussed in
L. J. Romans, Realisations of classical and quantum W 3 W_3 symmetry , Nuclear Physics B 352 :3 (1991) 829–848 doi
Relation to L-infinity algebras is discussed in
Relation to brane intersection in M-theory
Davide Gaiotto , Miroslav Rapčák, Yehao Zhou. Deformed Double Current Algebras, Matrix Extended W ∞ W_{\infty} Algebras, Coproducts, and Intertwiners from the M2-M5 Intersection (2023). (arXiv:2309.16929 ).
Last revised on September 11, 2024 at 08:35:34.
See the history of this page for a list of all contributions to it.