nLab basic complex line bundle on the 2-sphere

Contents

Context

Bundles

bundles

Contents

Idea

The basic line bundle on the 2-sphere is the complex line bundle on the 2-sphere whose first Chern class is a generator ±1H 2(S 2,)\pm 1 \in \mathbb{Z} \,\simeq\, H^2(S^2, \mathbb{Z}), equivalently the tautological line bundle on the Riemann sphere regarded as complex projective 1-space.

This is the pullback bundle of the map S 2BU(1)B 2S^2 \to B U(1) \simeq B^2 \mathbb{Z} to the classifying space/Eilenberg-MacLane space which itself represents a generator of the homotopy group π 2(S 2)\pi_2(S^2) \simeq \mathbb{Z}.

Beware that this basic line bundle is sometimes called the “canonical line bundle on the 2-sphere”, but it is not isomorphic to what in complex geometry is called the canonical bundle of the 2-sphere regarded as a Riemann surface. Instead it is “one half” of the latter, its theta characteristic. See also at geometric quantization of the 2-sphere.

The basic line bundle is the canonically associated bundle to basic circle principal bundle: the complex Hopf fibration. Another name for it is the tautological line bundle for the complex projective line 1()\mathbb{P}^1(\mathbb{C}) (the Riemann sphere), namely the map 2{(0,0)} 1()\mathbb{C}^2 \setminus \{(0, 0)\} \to \mathbb{P}^1(\mathbb{C}) mapping (x,y)(x, y) to [x;y][x; y].

Definition

The classifying space for circle principal bundles, or equivalently (via forming associated bundles) that of complex line bundles is B U ( 1 ) B U(1) , which as a Grassmannian is the infinite complex projective space P \mathbb{C}P^\infty. The homotopy type of this space is that of the Eilenberg-MacLane space K(,2)K(\mathbb{Z},2). This means that K(,2)K(\mathbb{Z},2) is in particular path-connected and has second homotopy group the integers: π 2(K(,2))\pi_2(K(\mathbb{Z},2)) \simeq \mathbb{Z}.

It being the classifying space for complex line bundles means that

{isomorphism classes of complex line bundles onS 2}{continuous functions S 2K(,2) up to homotopy}π 2(K(,2)). \left\{ \array{ \text{isomorphism classes of} \\ \text{complex line bundles} \\ \text{on}\,\, S^2 } \right\} \;\simeq\; \left\{ \array{ \text{continuous functions} \\ S^2 \longrightarrow K(\mathbb{Z},2) \\ \text{up to homotopy} } \right\} \;\simeq\; \pi_2(K(\mathbb{Z},2)) \;\simeq\; \mathbb{Z} \,.

The (isomorphism class) of the complex line bundle which corresponds to +1+1 \in \mathbb{Z} under this sequence of isomorphisms is called the basic complex line bundle on the 2-sphere.

Hence the basic complex line bundle on the 2-sphere is the pullback bundle of the universal complex line bundle on B U ( 1 ) B U(1) along the map S 2BU(1)S^2 \to B U(1) which represents the element 1π 2(BU(1))1 \in \mathbb{Z} \simeq \pi_2(B U(1)). If the classifying space B U ( 1 ) B U(1) is represented by the infinite complex projective space P \mathbb{C}P^\infty with its canonical CW-complex structure (this prop.), then this map is represented by the canonical cell inclusion S 2P S^2 \hookrightarrow\mathbb{C}P^\infty.

Notice that there is a non-trivial automorphism of \mathbb{Z} as an abelian group given by nnn \mapsto -n. This means that there is an ambiguity in the definition of the basic line bundle on the 2-sphere.

Properties

General

Lemma

(clutching construction of the basic line bundle)

Under the clutching construction of vector bundles on the 2-sphere, the basic complex line bundle on the 2-sphere is given by the transition function

S 1GL(1,) \mathbb{C} \supset \, S^1 \longrightarrow GL(1,\mathbb{C}) \, \subset \mathbb{C}

from the Euclidean circle S 1 2S^1 \subset \mathbb{R}^2 \simeq \mathbb{C} to the complex general linear group in 1-dimension, which is GL(1,){0}GL(1,\mathbb{C}) \simeq \mathbb{C} \setminus \{0\} given simply by

zz, z \mapsto z \,,

Alternatively, due to the sign ambiguity in the definition of the basic bundle, its clutching transition function is given by

zz. z \mapsto - z \,.
Proof

Under the clutching construction the isomorphism class of a complex line bundle corresponds to the homotopy class of its clutching transition function

S 1GL(1,){0} S^1 \to GL(1, \mathbb{C}) \simeq \mathbb{C} \setminus \{0\}

hence to an element of the fundamental group π 1({0})\pi_1(\mathbb{C} \setminus \{0\}) \simeq \mathbb{Z}. Hence by definition, the basic bundle has clutching transition function corresponding to ±1[S 1,GL(1,)]\pm 1 \in \mathbb{Z} \simeq [S^1, GL(1,\mathbb{Z})] and this element is represented by the function z±zz \mapsto \pm z.

Proposition

(fundamental tensor/sum relation of the basic complex line bundle)

Under direct sum of vector bundles S 2\oplus_{S^2} and tensor product of vector bundles S 2\otimes_{S^2}, the basic line bundle on the 2-sphere HS 2H \to S^2 satisfies the following relation

H S 2H(H S 2H) S 21 S 2 H \oplus_{S^2} H \;\simeq\; \left( H \otimes_{S^2} H \right) \oplus_{S^2} 1_{S^2}

(where 1 S 21_{S^2} denotes the trivial vector bundle complex line bundle on the 2-sphere).

(e.g (Hatcher, Example 1.13))

Proof

Via the clutching construction there is a single transition function of the form

S 1GL(n,) S^1 \longrightarrow GL(n,\mathbb{C})

that characterizes all the bundles involved. With S 1S^1 \hookrightarrow \mathbb{C} identified with the topological subspace of complex numbers of unit absolute value, the standard choice for these functions is

  • for the trivial line bundle 1 S 21_{S^2} we may choose

    f 1:z(1)f_1 \colon z \mapsto \left( 1 \right);

  • for the basic line bundle we may choose (by lemma )

    f H:z(z)f_H \colon z \mapsto \left( z\right)

This yields

  • for HH1 S 2H \otimes H \oplus 1_{S^2} the clutching function

    z(z 2 0 0 1)z \mapsto \left( \array{ z^2 & 0 \\ 0 & 1 }\right)

  • for HHH \oplus H the clutching function

    z(z 0 0 z)z \mapsto \left( \array{ z & 0 \\ 0 & z } \right).

Since the complex general linear group Gl(n,)Gl(n,\mathbb{C}) is path-connected (by this prop.), there exists a continuous function

γ:[0,1]GL(2,) \gamma \colon [0,1] \longrightarrow GL(2,\mathbb{C})

connecting the identity matrix on 2\mathbb{C}^2 with the one that swaps the two entries, i.e.

with γ(0)=(1 0 0 1)\gamma(0) = \left( \array{ 1 & 0 \\ 0 & 1 } \right)

and γ(1)=(0 1 1 0)\gamma(1) = \left( \array{ 0 & 1 \\ 1 & 0 } \right)

Therefore the function

S 1×[0,1] GL(2,) (z,t) AA f H1(z)γ(t)f 1H(z)γ(t) \array{ S^1 \times [0,1] &\overset{}{\longrightarrow}& GL(2,\mathbb{C}) \\ (z,t) &\overset{\phantom{AA}}{\longrightarrow}& f_{H \oplus 1}(z) \cdot \gamma(t) \cdot f_{1 \oplus H}(z) \cdot \gamma(t) }

(with matrix multiplication on the right) is a left homotopy from f HHf_{H \oplus H} to f HH1f_{H \otimes H \oplus 1}.

Remark

(fundamental product theorem in topological K-theory)

Under the map

Vect(S 2) /K(X) Vect(S^2)_{/\sim} \longrightarrow K(X)

that sends complex vector bundles to their class in the topological K-theory ring K(X)K(X), the fundamental tensor/sum relation of prop. says that the K-theory class HH of the basic line bundle in K(X)K(X) satisfies the relation

(H1) 2 =H 2+12H=H 2+1 = 0 \begin{aligned} (H - 1)^2 & = H^2 + 1 - \underset{= H^2 + 1}{\underbrace{2 H}} \\ = & 0 \end{aligned}

in K(X)K(X).

(Notice that H1H-1 is the image of [H][H] in the reduced K-theory K˜(X)\tilde K(X) of S 2S^2 under the splitting K(X)K˜(X)K(X) \simeq \tilde K(X) \oplus \mathbb{Z} (by this prop.).)

It follows that there is a ring homomorphism of the form

[h]/((h1) 2) K(S 2) h AAA H \array{ \mathbb{Z}[h]/\left( (h-1)^2 \right) &\overset{}{\longrightarrow}& K(S^2) \\ h &\overset{\phantom{AAA}}{\mapsto}& H }

from the polynomial ring in one abstract generator, quotiented by this relation, to the topological K-theory ring.

It turns out that this homomorphism is in fact an isomorphism, hence that the relation (H1) 2=0(H-1)^2 = 0 from prop. is the only relation satisfied by the basic complex line bundle in topological K-theory.

More generally, for XX a topological space, then there is a composite ring homomorphism

K(X)[h]/((h1) 2) K(X)×K(S 2) K(X×S 2) (E,h) AAA (E,H) AAA (π X *E)(π S 2 *H) \array{ K(X) \otimes \mathbb{Z}[h]/((h-1)^2) & \longrightarrow & K(X) \times K(S^2) & \longrightarrow & K(X \times S^2) \\ (E, h) &\overset{\phantom{AAA} }{\mapsto}& (E,H) &\overset{\phantom{AAA}}{\mapsto}& (\pi_{X}^\ast E) \cdot (\pi_{S^2}^\ast H) }

to the topological K-theory ring of the product topological space X×S 2X \times S^2, where the second map is the external tensor product of vector bundles.

This composite is an isomorphism if XX is a compact Hausdorff space (for X=*X = \ast the point space this reduces to the previous statement).

This is called the fundamental product theorem in topological K-theory. It is the main ingredient in the proof of Bott periodicity in complex topological K-theory.

As an index bundle

We discuss how the basic complex line bundle on S 2S^2 is isomorphically the subbundle of +1 eigenspaces of a natural S 2S^2-parameterized Dirac-like linear operator acting on 2\mathbb{C}^2, which gives its natural realization as a Fredholm index bundle (cf. Rem. below). This kind of construction plays a key role in the discussion of Chern insulators (topological phases of matter with nontivial first Chern class of the valence bundle, cf. Rem. below).


To this end, consider:

  • \mathbb{H} the real star-algebra of quaternions, with norm given by |q| 2qq *{\vert q \vert}^2 \coloneqq q q^\ast,

  • im\mathbb{H}_{im} \subset \mathbb{H} the subspace of imaginary quaternions (qq \in \mathbb{H} such that q *=qq^\ast = - q), in which we choose, as usual, an orthonormal linear basis i,j,k\mathbf{i}, \mathbf{j}, \mathbf{k} such that ij=k\mathbf{i} \mathbf{j} = \mathbf{k},

  • End( 2)\mathbb{H} \longrightarrow End(\mathbb{C}^2) the star-algebra homomorphism which identifies the unit imaginary quaternions with Pauli matrices:

    σ End( 2) 1 [+1 +0 +0 +1] i i[+1 +0 +0 1] j i[+0 +1 +1 +0] k i[+0 +i i +0], \begin{array}{rcr} \mathbb{H} &\overset {\phantom{--} \sigma \phantom{--}} {\longrightarrow}& End(\mathbb{C}^2) \\ 1 &\mapsto& \left[\begin{matrix} \phantom{+}1 & \phantom{+}0 \\ \phantom{+}0 & \phantom{+}1 \end{matrix}\right] \\ \mathbf{i}\, &\mapsto& \mathrm{i} \left[\begin{matrix} \phantom{+}1 & \phantom{+}0 \\ \phantom{+}0 & -1 \end{matrix}\right] \\ \mathbf{j}\, &\mapsto& \mathrm{i} \left[\begin{matrix} \phantom{+}0 & \phantom{+}1 \\ \phantom{+}1 & \phantom{+}0 \end{matrix}\right] \\ \mathbf{k}\, &\mapsto& \mathrm{i} \left[\begin{matrix} \phantom{+}0 & \phantom{+}\mathrm{i} \\ -\mathrm{i} & \phantom{+}0 \end{matrix}\right] \mathrlap{\,,} \end{array}
  • S()S(\mathbb{H}) the 3-sphere of unit norm quaternions, which by the above homomorphism is identified with the special unitary matrices,

    S()σSU(2) S(\mathbb{H}) \underoverset {\sim} {\phantom{--} \sigma \phantom{--}} {\longrightarrow} SU(2)

    because

    det(x 0id+x 1σ i+x 2σ j+x 3σ k) =det[x 0+ix 1 ix 2x 3 ix 2+x 3 x 0ix 1] =(x 0) 2+(x 1) 2+(x 2) 2+(x 3) 2 \begin{array}{l} det\big( x_0 \mathrm{id} + x_1 \sigma_{\mathbf{i}} + x_2 \sigma_{\mathbf{j}} + x_3 \sigma_{\mathbf{k}} \big) \\ \;=\; det \left[ \begin{matrix} x_0 + \mathrm{i} x_1 & \mathrm{i}x_2 - x_3 \\ \mathrm{i} x_2 + x_3 & x_0 - \mathrm{i} x_1 \end{matrix} \right] \\ \;=\; (x_0)^2 + (x_1)^2 + (x_2)^2 + (x_3)^2 \end{array}

    and

    (x 0id+x 1σ i+x 2σ j+x 3σ k) (x 0id+x 1σ i+x 2σ j+x 3σ k) =(x 0idx 1σ ix 2σ jx 3σ k)(x 0id+x 1σ i+x 2σ j+x 3σ k) =(x 0) 2+(x 1) 2+(x 2) 2+(x 3) 2, \begin{array}{l} \big( x_0 \mathrm{id} + x_1 \sigma_{\mathbf{i}} + x_2 \sigma_{\mathbf{j}} + x_3 \sigma_{\mathbf{k}} \big)^\dagger \big( x_0 \mathrm{id} + x_1 \sigma_{\mathbf{i}} + x_2 \sigma_{\mathbf{j}} + x_3 \sigma_{\mathbf{k}} \big) \\ \;=\; \big( x_0 \mathrm{id} - x_1 \sigma_{\mathbf{i}} - x_2 \sigma_{\mathbf{j}} - x_3 \sigma_{\mathbf{k}} \big) \big( x_0 \mathrm{id} + x_1 \sigma_{\mathbf{i}} + x_2 \sigma_{\mathbf{j}} + x_3 \sigma_{\mathbf{k}} \big) \\ \;=\; (x_0)^2 + (x_1)^2 + (x_2)^2 + (x_3)^2 \,, \end{array}
  • the group action of SU(2)Spin(3)SU(2) \simeq Spin(3) through SO(3) on im 3\mathbb{H}_{im} \simeq_{{}_{\mathbb{R}}} \mathbb{R}^3 given by

    S()× imSpin(3)× 3 im 3 (q,x) qxq *, \begin{array}{ccc} \overset{ Spin(3) \times \mathbb{R}^3 }{ \overbrace{ S(\mathbb{H}) \times \mathbb{H}_{im} } } &\longrightarrow& \overset{ \mathbb{R}^3 }{ \overbrace{ \mathbb{H}_{im} } } \\ (q, x) &\mapsto& q x q^\ast \mathrlap{\,,} \end{array}
  • S( im)S(\mathbb{H}_{im}) the 2-sphere of unit-norm imaginary quaternions.

Observing that the complex Hopf fibration is equivalently (see there):

S() h S( im) q qiq * \begin{array}{c} S(\mathbb{H}) &\overset {\phantom{--} h_{\mathbb{C} \phantom{--}} } {\longrightarrow} & S(\mathbb{H}_{im}) \\ q &\mapsto& q \cdot \mathbf{i} \cdot q^\ast \end{array}

whose fiber over i\mathbf{i} is

S()U(1) S()SU(2) x+yi x+yi, \begin{array}{rcl} \overset{ \mathrm{U}(1) }{ \overbrace{ S(\mathbb{C}) } } &\xhookrightarrow{\phantom{---}}& \overset{ \mathrm{SU}(2) }{ \overbrace{ S(\mathbb{H}) } } \\ x + y \mathrm{i} &\mapsto& x + y \mathbf{i} \,, \end{array}

it follows that the basic complex line bundle on the 2-sphere is the associated complex line bundle

S 3× U(1)={(q,z)S()×} /((q,z)(qα *,αz) αS()). S^3 \times_{\mathrm{U}(1)} \mathbb{C} \;=\; \Big\{ (q,z) \in S(\mathbb{H}) \times \mathbb{C} \Big\}_{ \big/\big( (q,z) \sim (q \alpha^\ast, \alpha z) \;\forall_{\alpha \in S(\mathbb{C})}\, \big) } \,.

As such, this is a subbundle of the trivial complex vector bundle of rank=2=2, via this map: This subbundle is evidently characterized as the bundle of +1 eigenspaces of this S 2S^2-parameterized linear operator:

(1)S() iσ End( 2) qiq * iσ qiq *hence equivalently ofS 2 H End( 2) x(x 1,x 2,x 3) i(x 1σ i+x 2σ j+x 3σ k). \begin{array}{rrcl} S(\mathbb{H}) &\overset{\phantom{--} - \mathrm{i}\, \sigma \phantom{--}}{\longrightarrow}& End(\mathbb{C}^2) \\ q \mathbf{i} q^\ast &\mapsto& -\mathrm{i} \sigma_{ q \mathbf{i} q^\ast } \end{array} \;\;\;\; \text{hence equivalently of} \;\;\;\; \begin{array}{rrcl} S^2 &\overset{\phantom{--} H \phantom{--}}{\longrightarrow}& End(\mathbb{C}^2) \\ \vec x \equiv (x^1, x^2, x^3) &\mapsto& -\mathrm{i} \big( x^1 \sigma_{\mathbf{i}} + x^2 \sigma_{\mathbf{j}} + x^3 \sigma_{\mathbf{k}} \big) \,. \end{array}

(This statement, without proof, may be found for instance in Baum 2015 slide 32, Baum & Erp 2018 p 106-107).

Remark

(relation to Chern insulators) The normalized Hamiltonians (1) play a key role in solid state physics in the discussion of 2D 2-band crystals such as notably considered as models for Chern insulators (like the Haldane model, cf. Sticlet et al 2012 (2-3)).

It follows from the above discussion that

  1. any continuous family of such operators over a Brillouin torus T 2T^2 is given by a continuous map f:T 2S 2f \colon T^2 \longrightarrow{} S^2,

  2. the +1 eigenspace bundle of the corresponding family of operators on T 2T^2 (the valence bundle in these models) has first Chern class equal to the pullback along ff of the generating class 1H 2(S 2;)1 \in H^2(S^2;\mathbb{Z}) of the basic line bundle on S 2S^2.

Similar arguments are ubiquituous in the literature on Chern insulators (cf. Sticlet et al 2012 p 2), though the concrete statement that all these constructions amount to pulling back the Bott generator along a map to the 2-sphere may not have been made explicit elsewhere.

Remark

(As a Fredholm index bundle)
From (1) it immediate to produce a nice S 2S^2-parameterized Fredholm operator

(2)S 2 F Fred() \begin{array}{rcl} S^2 &\overset{F}{\longrightarrow}& Fred(\mathscr{H}) \end{array}

whose index bundle is the basic complex line bundle, hence which represents the latter’s class in topological K-theory under the Atiyah-Jänich theorem:

To that end let 2 2()\mathscr{H} \coloneqq \mathbb{C}^2 \oplus \ell_2(\mathbb{N}), and take

F x[H xid P 2 0 shift 2], F_{\vec x} \;\coloneqq\; \left[ \begin{matrix} H_x - \mathrm{id} & P_2 \\ 0 & shift^2 \end{matrix} \right] \,,

where

2() P 2 2 nc n|n [c 0 c 1] \begin{array}{rcl} \ell_2(\mathbb{N}) &\overset{ P_2 }{\longrightarrow}& \mathbb{C}^2 \\ \sum_n c_n {\vert n \rangle} &\mapsto& \left[ \begin{matrix} c_0 \\ c_1 \end{matrix} \right] \end{array}

and

2() shift 2 2() |n {0 ifn1 |n2 otherwise. \begin{array}{rcl} \ell_2(\mathbb{N}) &\overset{shift^2}{\longrightarrow}& \ell_2(\mathbb{N}) \\ {\vert n \rangle} &\mapsto& \left\{ \begin{array}{ccl} 0 & \text{if}\; n \leq 1 \\ {\vert n-2\rangle} & \text{otherwise} \mathrlap{\,.} \end{array} \right. \end{array}

This is such that ker(F x)=ker(H xid)ker(F_{\vec x}) = ker(H_{\vec x} - id) and coker(F x)=0coker(F_{\vec x}) = 0, whence we indeed have a parametrized Fredholm operator whose index bundle is ker(H xid)ker(H_{\vec x} - id).

Remark

The first presentation in (1) makes manifest that the map S 2End( 2)S^2 \longrightarrow End(\mathbb{C}^2) is Spin(3)Spin(3)-equivariant: with respect to the rotation action through SO(3)SO(3) on the left and the conjugation action by special unitary matrices in SU(2)Spin(3)SU(2) \simeq Spin(3) on the right.

From this it follows that also the corresponding parameterized Fredholm operator (2) is Spin(3)Spin(3)-equivariant, if we let Spin(3)SU(2)Spin(3) \simeq SU(2) act on

2 2() 2 \mathscr{H} \,\simeq\, \mathbb{C}^2 \oplus \ell_2(\mathbb{N}) \,\simeq\, \bigoplus_{\mathbb{N}} \mathbb{C}^2

as the infinite direct sum of the defining representation of SU(2)SU(2).

The resulting Spin(3)Spin(3)-equivariant family of Fredholm operators should the the representation of the tautological equivariant line bundle in the equivariant K-theory of S 2S^2.

References

Last revised on June 21, 2025 at 18:31:05. See the history of this page for a list of all contributions to it.