nLab circle




topology (point-set topology, point-free topology)

see also differential topology, algebraic topology, functional analysis and topological homotopy theory


Basic concepts

Universal constructions

Extra stuff, structure, properties


Basic statements


Analysis Theorems

topological homotopy theory

Manifolds and cobordisms



The circle is a fantastic thing with lots and lots of properties and extra structures. It is a:

and it is one of the basic building blocks for lots of areas of mathematics, including:


We consider the circle first as a topological space, then as the homotopy type represented by that space.

As a topological space


The two most common definitions of the circle as a topological space are:

  1. It is the topological subspace of \mathbb{C} consisting of those numbers of norm/absolute value 11:

    U(1){z:|z|=1} U(1) \coloneqq \{z \in \mathbb{C} : {|z|} = 1\}

    (of course, \mathbb{C} can be identified with 2\mathbb{R}^2 and an equivalent formulation of this definition given; also, to emphasise the reason for the notation U(1)U(1), \mathbb{C} can be replaced by *=GL 1()\mathbb{C}^* = GL_1(\mathbb{C}))

  2. It is the quotient of \mathbb{R} by the integers:

    S 1/ S^1 \coloneqq \mathbb{R}/\mathbb{Z}

The standard equivalence of the two definitions is given by the map \mathbb{R} \to \mathbb{C}, te 2πitt \mapsto e^{2 \pi i t}.

In constructive mathematics, the notions of real numbers and complex numbers split into multiple notions. In general, if the metric space of the real numbers is not sequentially Cauchy complete, such as in the modulated Cantor real numbers, then the two definitions cannot be proven to be equivalent, since the exponential function is not well defined on \mathbb{C}. Only if the real numbers are sequentially Cauchy complete are the two definitions the same.

As a homotopy type

As the bare homotopy type, the shape ʃS 1Bʃ S^1 \simeq \mathbf{B}\mathbb{Z} of the cohesive circle S 1S^1 is equivalent to the homotopy pushout

ʃS 1* ***. ʃ S^1 \simeq * \coprod_{* \coprod * } * \,.

In homotopy type theory, this can be formalized as a higher inductive type generated by a point base and a path from base to itself; see circle type for more.


The topological circle is a compact, connected topological space. It is a 11-dimensional smooth manifold (indeed, it is the only 11-dimensional compact, connected smooth manifold). It is not simply connected.

The circle is a model for the classifying space for the abelian group \mathbb{Z}, the integers. Equivalently, the circle is the Eilenberg-Mac Lane space K(,1)K({\mathbb{Z}},1). Explicitly, the first homotopy group π 1(S 1)\pi_1(S^1) is the integers \mathbb{Z}. But the higher homotopy groups π n(S 1)*\pi_n(S^1) \simeq *, n>1n \gt 1 all vanish (and so is a homotopy 1-type). This can be deduced from the result that the loop space ΩS 1\Omega S^1 of the circle is the group {\mathbb{Z}} of integers and that S 1S^1 is path-connected. A proof of this in homotopy type theory is in Shulman P1S1.

The result that S 1K(,1)S^1\simeq K({\mathbb{Z}},1) holds in a general Grothendieck (∞,1)-topos. In fact, more generally, for XX a pointed object of a Grothendieck (∞,1)-topos {\mathcal{H}}, there is a natural equivalence between the suspension object ΣX\Sigma X and the classifying space BX B{\mathbb{Z}}\wedge X. In particular, when XX is specifically the 0-truncated two-point space S 0S^0, we get S 1K(,1)S^1\simeq K({\mathbb{Z}},1).

The product of the circle with itself is the (22)-torus

T=S 1×S 1. T = S^1 \times S^1 \,.

Generally, the nn-torus T nT^n is (S 1) n(S^1)^n.


A formalization of the shape homotopy type ʃS 1Bʃ S^1 \simeq \mathbf{B}\mathbb{Z} of the circle as a higher inductive type in homotopy type theory, along with a proof that ΩʃS 1\Omega ʃS^1\simeq {\mathbb{Z}} (and hence π 1(ʃS 1)\pi_1(ʃS^1) \simeq \mathbb{Z}):

The proof is formalized therein using the Agda proof assistant. See also

Last revised on December 10, 2022 at 15:53:04. See the history of this page for a list of all contributions to it.