Definitions
Transfors between 2-categories
Morphisms in 2-categories
Structures in 2-categories
Limits in 2-categories
Structures on 2-categories
homotopy theory, (∞,1)-category theory, homotopy type theory
flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed…
models: topological, simplicial, localic, …
see also algebraic topology
Introductions
Definitions
Paths and cylinders
Homotopy groups
Basic facts
Theorems
The core of a category $A$ is the maximal subcategory of $A$ that is a groupoid, consisting of all its objects and all isomorphisms between them. The core is not a functor on the 2-category Cat, but it is a functor on the (2,1)-category $Cat_g$ of categories, functors, and natural isomorphisms. In fact, it is a coreflection of $Cat_g$ into Gpd.
In general, for any 2-category $K$ we write $K_g$ for its “homwise core:” the sub-2-category determined by all the objects and morphisms but only the iso 2-morphisms. Of course, $K_g$ is a (2,1)-category. Then $gpd(K)$ is a full sub-2-category of $K_g$, and we can ask whether it is coreflective. In a regular 2-category, however, it turns out that there is a stronger and more useful notion which implies this coreflectivity.
A core of an object $A$ in a regular 2-category is a morphism $J\to A$ which is eso, pseudomonic, and where $J$ is groupoidal.
We say that a regular 2-category has enough groupoids if every object admits an eso from a groupoidal one. Thus, a (2,1)-exact 2-category has cores if and only if it has enough groupoids.
Likewise, we say that a regular 2-category has enough discretes if every object admits an eso from a discrete one. Clearly this is a stronger condition. Note, though, that if $K$ has enough groupoids, then $pos(K)$ has enough discretes, since the core of any posetal object is discrete.
Having enough discretes, or at least enough groupoids, is a very familiar aspect of 2-categories such as $Cat$. It also turns out to make the internal logic? noticeably easier to work with. However, in a sense none of the really “new” 2-categories have enough groupoids or discretes.
The 2-exact 2-categories having enough discretes are precisely the categories of internal categories and anafunctors in 1-exact 1-categories; see exact completion of a 2-category?. Likewise, any 2-exact 2-categories having enough groupoids consists of certain internal categories in a (2,1)-category.
Basically the only Grothendieck 2-toposes having enough discretes are the 2-categories of stacks on 1-sites, and the only ones having enough groupoids are the 2-categories of stacks on (2,1)-sites. The “honestly 2-dimensional” case of stacks on 2-sites (almost?) never have enough of either.
In a regular 2-category $K$, any core $J\to A$ is a coreflection of $A$ from $K_g$ into $gpd(K)$.
We must show that for any groupoidal $G$, the functor
is an equivalence. Since $J\to A$ is pseudomonic in $K$, it is ff in $K_g$, so this functor is full and faithful; thus it remains to show it is eso. Given any map $G\to A$, take the pullback
and let $P_1\;\rightrightarrows\; P$ be the kernel of $P\to G$. Since the composite $P\to A$ descends to $G$, it comes equipped with an action by this kernel. However, since $G$ is groupoidal, $P_1\;\rightrightarrows\; P$ is a (2,1)-congruence, so the 2-cell defining the action must be an isomorphism. Therefore, it must factor uniquely through the pseudomonic $J\to A$, so $P\to J$ has an action as well; thus it descends to a map $G\to J$, as desired.
In particular, cores in a regular 2-category are unique up to unique equivalence. We write $J(A)$ for the core of $A$, when it exists.
An object $A$ of a (2,1)-exact 2-category has a core if and only if there is an eso $C\to A$ where $C$ is groupoidal.
“Only if” is clear, so suppose that $p:C\to A$ is eso and $C$ is groupoidal. Let $C_1 = C\times_A C$ be the pullback. Then $C_1$ is also groupoidal and is a (2,1)-congruence on $C$, so by exactness it is the kernel of some eso $q:C\to J$. There is an evident induced map $m:J\to A$; we claim that this is a core of $A$.
Evidently $m:J\to A$ is eso, since the eso $C\to A$ factors through it. And since $C_1$ is a (2,1)-congruence, the classification of congruences implies that $J$ is groupoidal; thus it remains to show that $m$ is pseudomonic.
First suppose given $f,g: X\;\rightrightarrows\; J$. Pulling back $q$ along $f$ and $g$ gives esos $P_1\to X$ and $P_2\to X$, whose pullback $P = P_1\times_X P_2$ comes with an eso $r:P \to T$ and two morphisms $h,k:P \to C$ with $q h \cong f r$ and $q k \cong g r$. Then any pair of 2-cells $\alpha,\beta: f\to g$ induce maps $P\;\rightrightarrows\; C_1$, since $C_1$ is the kernel $(q/q)$. But if $m\alpha = m\beta$, then these two maps must be equal, since $C_1$ is also the kernel $(p/p)$. Therefore, $\alpha r=\beta r$, and since $r$ is eso, $\alpha=\beta$; thus $m$ is faithful.
On the other hand, again given $f,g: X\;\rightrightarrows\; J$, any isomorphism $\alpha: m f\cong m g$ induces a map $P\to C_1$ and therefore a 2-cell $\beta: f r\to g r$ with $m\beta = \alpha r$. To show that $\beta$ descends to a 2-cell $f\to g$, we must verify that it is an action 2-cell for the actions of $P\;\rightrightarrows\; J$ on $f r$ and $g r$. But $m\beta$ is an action 2-cell, since $m\beta = \alpha r$, and we now know that $m$ is faithful, so it reflects the axiom for an action 2-cell. Therefore, $m$ is full-on-isomorphisms, and hence pseudomonic.
We also remark that cores, when they exist, “capture all the information about subobjects.”
If $K$ is a regular 2-category and $A$ is an object having a core $j:J\to A$, then $j^*:Sub(A)\to Sub(J)$ is an equivalence.
It is a general fact in a regular 2-category that for any eso $f:X\to Y$, $f^*:Sub(Y)\to Sub(X)$ is full (and faithful, which of course is automatic for a functor between posets). For if $f^*U \le f^*V$, then we have a square
in which $f^*U \to U$ is eso and $V\to Y$ is ff, hence we have $U\to V$ over $Y$.
Thus, in our case, $j^*$ is full and faithful since $j$ is eso, so it suffices to show that for any ff $U\to J$ we have $j^* \exists_j U \le U$ in $Sub(J)$. But we have a commutative square
where the vertical arrows are ff and the bottom arrow $J\to X$ is faithful and pseudomonic, from which it follows that $U\to \exists_j U$ is also faithful and pseudomonic. Since $U\to \exists_j U$ is eso by definition, $U$ is a core of $\exists_j U$, and since $j^*\exists_j U$ is a groupoid mapping to $\exists_j U$, it factors through $U$, as desired.
The material on this page is taken from
Last revised on April 17, 2023 at 07:13:00. See the history of this page for a list of all contributions to it.