homotopy theory, (∞,1)-category theory, homotopy type theory
flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed…
models: topological, simplicial, localic, …
see also algebraic topology
Introductions
Definitions
Paths and cylinders
Homotopy groups
Basic facts
Theorems
model category, model -category
Definitions
Morphisms
Universal constructions
Refinements
Producing new model structures
Presentation of -categories
Model structures
for -groupoids
on chain complexes/model structure on cosimplicial abelian groups
related by the Dold-Kan correspondence
for equivariant -groupoids
for rational -groupoids
for rational equivariant -groupoids
for -groupoids
for -groups
for -algebras
general -algebras
specific -algebras
for stable/spectrum objects
for -categories
for stable -categories
for -operads
for -categories
for -sheaves / -stacks
(geometry Isbell duality algebra)
So far there are only few works on homotopy theory for operator algebras. One of the basic checks for good homotopy theory of operator algebras is that the Kasparov KK-groups should be obtained from Hom-s in the appropriate stable category of operator algebras. This subject is important in order to introduce more systematic homotopic methods in noncommutative geometry à la Alain Connes.
Quillen model category structures on various categories of operator algebras have been introduced and studied in
Michael Joachim, Mark W. Johnson, Realizing Kasparov’s KK-theory groups as the homotopy classes of maps of a Quillen model category, An alpine anthology of homotopy theory, Contemp. Math. 399, Amer. Math. Soc. 2006, pp. 163–197, MR2007c:46070
Paul Arne Østvær, Homotopy theory of -algebras, Frontiers in Mathematics, Springer Basel, 2010, (arxiv/0812.0154, pdf)
and a category of fibrant objects approach in
In fact, Baues fibration category structure has been constructed in 1997, not only on the category of -algebras but on a wider class of similar categories:
See at homotopical structure on C*-algebras.
The derived category/triangulated category approach to operator algebras is introduced in
Ralf Meyer, Ryszard Nest, Homological algebra in bivariant K-theory and other triangulated categories, math.KT/0702146
Ralf Meyer, Ryszard Nest, The Baum-Connes conjecture via localisation of categories), Topology 45 (2006), no. 2, 209–259, math.KT/0312292, MR2006k:19013
where a noncommutative analogue of the stable category of spectra is introduced.
There is also a related survey
Last revised on January 10, 2014 at 07:43:22. See the history of this page for a list of all contributions to it.