With braiding
With duals for objects
category with duals (list of them)
dualizable object (what they have)
ribbon category, a.k.a. tortile category
With duals for morphisms
With traces
Closed structure
Special sorts of products
Semisimplicity
Morphisms
Internal monoids
Examples
Theorems
In higher category theory
The concept of localization of a category for the case of monoidal categories with localization functors being monoidal functors.
On monoidal Bousfield localization of monoidal model categories:
Clark Barwick, Prop. 4.47 in: On left and right model categories and left and right Bousfield localizations, Homology Homotopy Appl. 12 2 (2010) 245-320 [doi:10.4310/hha.2010.v12.n2.a9, euclid:1296223884, subsuming: arXiv:0708.2067, arXiv:0708.2832, arXiv:0708.3435]
Sergey Gorchinskiy, Vladimir Guletskii, Lemma 28 in: Symmetric powers in abstract homotopy categories, Adv. Math., 292 (2016) 707-754 [arXiv:0907.0730, doi:10.1016/j.aim.2016.01.011]
David White, Monoidal Bousfield Localizations and Algebras over Operads, PhD thesis (2014), published in Equivariant Topology and Derived Algebra: A conference in honor of John Greenlees’ 60th birthday, Cambridge University Press (2021) 179-239 [doi:10.1017/9781108942874.007, digitalcollections:ir-2263, arXiv:1404.5197]
Tyler Lawson, Prop. 12.18 in: An introduction to Bousfield localization, in: Stable categories and structured ring spectra, MSRI Book Series, Cambridge University Press (2022) [arXiv:2002.03888]
Luca Pol, Jordan Williamson, The Left Localization Principle, completions, and cofree -spectra, J. Pure Appl. Algebra 224 11 (2020) 106408 [arXiv:1910.01410, doi:10.1016/j.jpaa.2020.106408]
Last revised on April 26, 2023 at 06:50:43. See the history of this page for a list of all contributions to it.