category with duals (list of them)
dualizable object (what they have)
ribbon category, a.k.a. tortile category
monoidal dagger-category?
A permutative category is a symmetric monoidal category (possibly taken to be internal to Top) in which associativity (including unitality) holds strictly. Also known as a symmetric strict monoidal category.
(May, def. 1) (Elmendorf-Mandell, def. 3.1).
Every symmetric monoidal category is equivalent to a permutative one (Isbell).
The nerve of a permutative category is an E-infinity space, and therefore can be infinitely delooped to obtain an infinite loop space as its group completion.
An original account is in
Discussion in relation to symmetric spectra is in
Discussion in the context of K-theory of a permutative category is in
Peter May, The spectra associated to permutative categories, Topology 17 (1978) (pdf)
Peter May, $E_\infty$ Ring Spaces and $E_\infty$ Ring spectra, Springer lectures notes in mathematics, Vol. 533, (1977) (pdf) chaper VI
Anthony Elmendorf, Michael Mandell, Rings, modules and algebras in infinite loop space theory, K-Theory 0680 (web, pdf)
Last revised on December 15, 2016 at 18:22:10. See the history of this page for a list of all contributions to it.