nLab
AGT correspondence

Context

Physics

physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes


theory (physics), model (physics)

experiment, measurement, computable physics

Quantum field theory

String theory

Contents

Idea

The AGT correspondence (AGT) is a relation between the partition function of SU(2) n+3g3SU(2)^{n+3g-3}-N=2 D=4 super Yang-Mills theory and Liouville theory on an nn-punctured Riemann surface C g,nC_{g,n} of genus gg

(from which the super Yang-Mills theory is obtained by compactifying the M5-brane 6d (2,0)-supersymmetric QFT on it, see at N=2 D=4 super Yang-Mills theory, the section Construction by compactification).

References

The original article is

See also

  • A. A. Belavin, M. A. Bershtein, B. L. Feigin, A. V. Litvinov, G. M. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, http://arxiv.org/abs/1111.2803

  • Volker Schomerus, Paulina Suchanek, Liouville’s imaginary shadow, arxiv/1210.1856

  • A.Mironov, A.Morozov, The power of Nekrasov functions, arxiv/0908.2190

  • D. Galakhov, A. Mironov, A. Morozov, S-duality as a beta-deformed Fourier transform, arxiv/1205.4998

  • A. Mironov, Spectral duality in integrable systems from AGT conjecture, arxiv/1204.0913

  • A. Belavin, V. Belavin, AGT conjecture and integrable structure of conformal field theory for c=1c=1, Nucl.Phys.B850:199-213 (2011) arxiv/1102.0343

  • A. Belavin, V. Belavin, M. Bershtein, Instantons and 2d Superconformal field theory, arxiv/1106.4001

  • Kazunobu Maruyoshi, Quantum integrable systems, matrix models, and AGT correspondence, seminar slides

  • Giulio Bonelli, Alessandro Tanzini, Hitchin systems, N=2 gauge theories and W-gravity, arxiv/0909.4031

  • Giulio Bonelli, Kazunobu Maruyoshi, Alessandro Tanzini, Quantum Hitchin systems via beta-deformed matrix models, arxiv/1104.4016

The AGT correspondence is treated with the help of a Riemann-Hilbert problem in

  • G. Vartanov, J. Teschner, Supersymmetric gauge theories, quantization of moduli spaces of flat connections, and conformal field theory, arxiv/1302.3778

Revised on June 28, 2013 11:21:44 by Urs Schreiber (80.90.61.2)