physics, mathematical physics, philosophy of physics
theory (physics), model (physics)
experiment, measurement, computable physics
Axiomatizations
Tools
Structural phenomena
Types of quantum field thories
and
This entry contains material related to the textbook
Leonardo Castellani, Riccardo D'Auria, Pietro Fré,
Supergravity and Superstrings - A Geometric Perspective
World Scientific, 1991
on supergravity and string theory with an emphasis on the D'Auria-Fré formulation of supergravity, based on
This book focuses on the discussion of supergravity-aspects of string theory from the point of view of the D'Auria-Fré formulation of supergravity, which is implicitly a formulation via supergeometry higher Cartan geometry. Therefore, while far, far from being written in the style of a mathematical treatise, this book stands out as making a consistent proposal for what the central ingredients of a mathematical formalization might be: as explained at the above link, secretly this book is all about describing supergravity in terms of infinity-connections with values in super L-infinity algebras such as the supergravity Lie 3-algebra.
See also higher category theory and physics.
The original article that introduced th D’Auria-Fré-formalism is
The geometric perspective discussed there is both the emphasis of working over base supermanifolds and combined with that the the approach that here we call tthe D’Auria-Fré-formalism .
The interpretation of the D’Auria-Fré-formalism in terms of ∞-Lie algebra valued forms together with a discussion of the supergravity Lie 3-algebra in the context of String Lie n-algebras was given in
Apart from that the first vague mention of the observation that the “FDA”-formalism for supergravity is about higher categorical Lie algebras (as far as I am aware, would be grateful for further references) is page 2 of
An attempt at a comprehensive discussion of the formalism in the context of cohesive (∞,1)-topos-theory for smooth super ∞-groupoids is in the last section of
Here are some more references:
Pietro Fré, M-theory FDA, twisted tori and Chevalley cohomology (arXiv)
Pietro Fré, Pietro Antonio Grassi, Pure spinors, free differential algebras, and the supermembrane (arXiv:hep-th/0606171)
Pietro Fré and Pietro Antonio Grassi, Free differential algebras, rheonomy, and pure spinors (arXiv:0801.3076)