Contents

### Context

#### Gravity

gravity, supergravity

# Contents

## Idea

The radius of the horizon of a Schwarzschild spacetime black hole of mass $m$ is called the Schwarzschild radius,

$r_m = 2 m G/c^2$

where $G$ denotes the gravitational constant and $c$ denotes the speed of light.

## Properties

### Relation to Compton wavelength

Another physical unit of length parameterized by a mass $m$ is the Compton wavelength $\ell_m = \frac{2 \pi \hbar}{m c}$. Solving the equation

$\array{ & \ell_m &=& r_m \\ \Leftrightarrow & 2\pi\hbar / m c &=& 2 m G / c^2 }$

for $m$ yields the Planck mass

$m_{P} \coloneqq \tfrac{1}{\sqrt{\pi}} m_{\ell = r} = \sqrt{\frac{\hbar c}{G}} \,.$

The corresponding Compton wavelength $\ell_{m_{P}}$ is given by the Planck length $\ell_P$

$\ell_{P} \coloneqq \tfrac{1}{2\pi} \ell_{m_P} = \sqrt{ \frac{\hbar G}{c^3} } \,$

fundamental scales (fundamental/natural physical units)

• speed of light$\,$ $c$

• Planck's constant$\,$ $\hbar$

• gravitational constant$\,$ $G_N = \kappa^2/8\pi$

• Planck scale

• Planck length$\,$ $\ell_p = \sqrt{ \hbar G / c^3 }$

• Planck mass$\,$ $m_p = \sqrt{\hbar c / G}$

• depending on a given mass $m$

• Compton wavelength$\,$ $\lambda_m = \hbar / m c$

• Schwarzschild radius$\,$ $2 m G / c^2$

• depending also on a given charge $e$

• Schwinger limit$\,$ $E_{crit} = m^2 c^3 / e \hbar$
• GUT scale

• string scale

• string tension$\,$ $T = 1/(2\pi \alpha^\prime)$

• string length scale$\,$ $\ell_s = \sqrt{\alpha'}$

• string coupling constant$\,$ $g_s = e^\lambda$

Last revised on March 30, 2020 at 09:27:31. See the history of this page for a list of all contributions to it.