nLab gravitino

Contents

Context

Gravity

Physics

physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes


theory (physics), model (physics)

experiment, measurement, computable physics

Super-Geometry

Fields and quanta

fields and particles in particle physics

and in the standard model of particle physics:

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

(also: antiparticles)

effective particles

hadrons (bound states of the above quarks)

solitons

in grand unified theory

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Contents

Idea

In quantum field theory the term gravitino refers to the superpartner of the graviton, a Rarita-Schwinger field of spin 3/23/2 that appears in supergravity.

In supergravity a field configuration is a connection locally given by a Lie algebra-valued form

(E,Ω,Spi):TX𝔰𝔦𝔰𝔬(d,1) (E, \Omega, \Spi) : T X \to \mathfrak{siso}(d,1)

on spacetime with values in the super Poincare Lie algebra. Its components Ψ\Psi in the spin group representation Γ𝔰𝔦𝔰𝔬(d)\Gamma \subset \mathfrak{siso}(d) is the gravitino field.

The name derives from the fact that the other two components are identified in gravity with the graviton field.

References

General

See also

Classification of long-range forces

Classification of possible long-range forces, hence of scattering processes of massless fields, by classification of suitably factorizing and decaying Poincaré-invariant S-matrices depending on particle spin, leading to uniqueness statements about Maxwell/photon-, Yang-Mills/gluon-, gravity/graviton- and supergravity/gravitino-interactions:

Review:

As a dark matter candidate

Discussion of the gravitino as a dark matter candidate:

A proposal for super-heavy gravitinos as dark matter, by embedding D=4 N=8 supergravity into E10-U-duality-invariant M-theory:

following the proposal towards the end of

  • Murray Gell-Mann, introductory talk at Shelter Island II, 1983 (pdf)

    in: Shelter Island II: Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics. MIT Press. pp. 301–343. ISBN 0-262-10031-2.

Further duscussion:

Last revised on March 20, 2023 at 09:24:44. See the history of this page for a list of all contributions to it.