nLab
graviton

Contents

Context

Gravity

Physics

physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes


theory (physics), model (physics)

experiment, measurement, computable physics

Fields and quanta

field (physics)

standard model of particle physics

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

(also: antiparticles)

effective particles

hadron (bound states of the above quarks)

solitons

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Contents

Idea

The graviton is the (hypothetical) quantum of the field of gravity, i.e., the quanta of the theory of quantum gravity.

Details

In first-order formulation of gravity a field configuration is locally a Lie algebra-valued form

(E,Ω):TX𝔦𝔰𝔬(d) (E, \Omega) : T X \to \mathfrak{iso}(d)

with values in the Poincare Lie algebra.

This is a vielbein EE and a spin connection Ω\Omega. This together is the graviton field.

A graviton has spin 22, and is massless. We can see that it has spin 22 from the fact that the source of gravity is TT, the energy-momentum tensor, which is a second-rank tensor. It can be shown that a massless spin-22 particle has to be a graviton. The basic concept behind this is that massless particles have to couple to conserved currents - the stress-energy tensor TT, the source of gravity.

In supergravity this is accompanied by the gravitino.

References

General

(…)

Classification of long-range forces

Classification of possible long-range forces, hence of scattering processes of massless fields, by classification of suitably factorizing and decaying Poincaré-invariant S-matrices depending on particle spin, leading to uniqueness statements about Maxwell/photon-, Yang-Mills/gluon-, gravity/graviton- and supergravity/gravitino-interactions:

Review:

Last revised on January 30, 2020 at 07:03:37. See the history of this page for a list of all contributions to it.