nLab
angular momentum

Context

Physics

, ,

Surveys, textbooks and lecture notes

  • ,


,

, ,

    • , , , ,

      • ,

      • ,

      • ,

        • ,

      • and
    • Axiomatizations

          • ,
        • -theorem

    • Tools

      • ,

        • ,

        • ,
    • Structural phenomena

    • Types of quantum field thories

        • ,

        • , ,

        • examples

          • ,
          • ,
        • , , , ,

        • , ,

Representation theory

Ingredients

  • , ,

Definitions

, ,

  • ,

  • , ,

  • ,

  • ,

  • ,

  • ,

  • ,

  • ,

  • , , ,

  • , ,

  • ,

  • ,

  • , , ,

Geometric representation theory

  • , ,

  • , , ,

  • , , ,

  • ,

  • , , ,

Theorems

Contents

Idea

In classical mechanics, the analog of momentum for rotational dynamics is called angular momentum.

In quantum mechanics, the angular momentum quantum observables constitute a representation of the (special) orthogonal group SO(n)SO(n) of nn-dimensional Euclidean space, in applications typically considered for n=3n = 3 or n=2n = 2.

Therefore the theory of quantum angular momentum is that of the irreducible representation of the rotation group.

References

Classical angular momentum

Representation theory of the special orthogonal group

  • Wheeler, Irreducible representation of the rotation group (pdf)

Last revised on October 31, 2013 at 00:16:57. See the history of this page for a list of all contributions to it.