nLab differential algebra

Contents

Contents

Idea

A differential algebra is an associative algebra AA equipped with a derivation d:AAd \colon A \to A, typically required to satisfy dd=0d \circ d = 0.

If AA is a field one accordingly speaks of a differential field.

If AA is a graded algebra and dd is of degree 1 one speaks of a differential graded algebra.

Etc.

References

algebraic structureoidification
truth valuepreorder
magmamagmoid
unital magmaunital magmoid
quasigroupquasigroupoid
looploopoid
semigroupsemicategory
monoidcategory
anti-involutive monoiddagger category
associative quasigroupassociative quasigroupoid
groupgroupoid
flexible magmaflexible magmoid
alternative magmaalternative magmoid
absorption monoidabsorption category
cancellative monoidcancellative category
rigCMon-enriched category
nonunital ringAb-enriched semicategory
nonassociative ringAb-enriched unital magmoid
ringringoid
nonassociative algebralinear magmoid
nonassociative unital algebraunital linear magmoid
nonunital algebralinear semicategory
associative unital algebralinear category
C-star algebraC-star category
differential algebradifferential algebroid
flexible algebraflexible linear magmoid
alternative algebraalternative linear magmoid
Lie algebraLie algebroid
monoidal poset2-poset
strict monoidal groupoid?strict (2,1)-category
strict 2-groupstrict 2-groupoid
strict monoidal categorystrict 2-category
monoidal groupoid(2,1)-category
2-group2-groupoid/bigroupoid
monoidal category2-category/bicategory

Last revised on May 23, 2021 at 16:30:22. See the history of this page for a list of all contributions to it.