nLab
model structure on chain complexes of super vector spaces

Context

Super-Algebra and Super-Geometry

Model category theory

model category

Definitions

  • category with weak equivalences

  • weak factorization system

  • homotopy

  • small object argument

  • resolution

  • Morphisms

    • Quillen adjunction

    • Universal constructions

      • homotopy Kan extension

      • homotopy limit/homotopy colimit

      • Bousfield-Kan map

      • Refinements

        • monoidal model category

        • enriched model category

        • simplicial model category

        • cofibrantly generated model category

        • algebraic model category

        • compactly generated model category

        • proper model category

        • cartesian closed model category, locally cartesian closed model category

        • stable model category

        • Producing new model structures

          • on functor categories (global)

          • on overcategories

          • Bousfield localization

          • transferred model structure

          • Grothendieck construction for model categories

          • Presentation of (,1)(\infty,1)-categories

            • (∞,1)-category

            • simplicial localization

            • (∞,1)-categorical hom-space

            • presentable (∞,1)-category

            • Model structures

              • Cisinski model structure
              • for \infty-groupoids

                for ∞-groupoids

                • on topological spaces

                  • Strom model structure?
                • Thomason model structure

                • model structure on presheaves over a test category

                • on simplicial sets, on semi-simplicial sets

                • model structure on simplicial groupoids

                • on cubical sets

                • on strict ∞-groupoids, on groupoids

                • on chain complexes/model structure on cosimplicial abelian groups

                  related by the Dold-Kan correspondence

                • model structure on cosimplicial simplicial sets

                • for nn-groupoids

                  • for n-groupoids/for n-types

                  • for 1-groupoids

                  • for \infty-groups

                    • model structure on simplicial groups

                    • model structure on reduced simplicial sets

                    • for \infty-algebras

                      general

                      • on monoids

                      • on simplicial T-algebras, on homotopy T-algebras

                      • on algebas over a monad

                      • on algebras over an operad,

                        on modules over an algebra over an operad

                      • specific

                        • model structure on differential-graded commutative algebras

                        • model structure on differential graded-commutative superalgebras

                        • on dg-algebras over an operad

                        • model structure on dg-modules

                        • for stable/spectrum objects

                          • model structure on spectra

                          • model structure on ring spectra

                          • model structure on presheaves of spectra

                          • for (,1)(\infty,1)-categories

                            • on categories with weak equivalences

                            • Joyal model for quasi-categories

                            • on sSet-categories

                            • for complete Segal spaces

                            • for Cartesian fibrations

                            • for stable (,1)(\infty,1)-categories

                              • on dg-categories
                              • for (,1)(\infty,1)-operads

                                • on operads, for Segal operads

                                  on algebras over an operad,

                                  on modules over an algebra over an operad

                                • on dendroidal sets, for dendroidal complete Segal spaces, for dendroidal Cartesian fibrations

                                • for (n,r)(n,r)-categories

                                  • for (n,r)-categories as ∞-spaces

                                  • for weak ∞-categories as weak complicial sets

                                  • on cellular sets

                                  • on higher categories in general

                                  • on strict ∞-categories

                                  • for (,1)(\infty,1)-sheaves / \infty-stacks

                                    • on homotopical presheaves

                                    • model structure for (2,1)-sheaves/for stacks

                                    • Edit this sidebar

                                      Contents

                                      Idea

                                      The category of chain complexes of super vector spaces over a field of characteristic zero carries a projective model category structure whose weak equivalences are the underlying quasi-isomorphisms and whose fibrations are the degreewise surjections (all either in unbounded degree, in non-negative degree or in non-positive degree).

                                      The model structure is hence the direct generalization of the projective model structure on chain complexes of plain vector spaces, to which it reduces on the objects concentrated in even super-degree.

                                      References

                                      A unified treatmeant generalizing to arbitary super Fermat theories is in

                                      Last revised on July 27, 2018 at 05:39:02. See the history of this page for a list of all contributions to it.