# nLab Berger's theorem

Contents

### Context

#### Riemannian geometry

Riemannian geometry

## Applications

#### Symplectic geometry

symplectic geometry

higher symplectic geometry

# Contents

## Statement

Berger’s theorem says that if a manifold $X$ is

then the possible special holonomy groups are the following

classification of special holonomy manifolds by Berger's theorem:

$\,$G-structure$\,$$\,$special holonomy$\,$$\,$dimension$\,$$\,$preserved differential form$\,$
$\,\mathbb{C}\,$$\,$Kähler manifold$\,$$\,$U(n)$\,$$\,2n\,$$\,$Kähler forms $\omega_2\,$
$\,$Calabi-Yau manifold$\,$$\,$SU(n)$\,$$\,2n\,$
$\,\mathbb{H}\,$$\,$quaternionic Kähler manifold$\,$$\,$Sp(n).Sp(1)$\,$$\,4n\,$$\,\omega_4 = \omega_1\wedge \omega_1+ \omega_2\wedge \omega_2 + \omega_3\wedge \omega_3\,$
$\,$hyper-Kähler manifold$\,$$\,$Sp(n)$\,$$\,4n\,$$\,\omega = a \omega^{(1)}_2+ b \omega^{(2)}_2 + c \omega^{(3)}_2\,$ ($a^2 + b^2 + c^2 = 1$)
$\,\mathbb{O}\,$$\,$Spin(7) manifold$\,$$\,$Spin(7)$\,$$\,$8$\,$$\,$Cayley form$\,$
$\,$G2 manifold$\,$$\,$G2$\,$$\,7\,$$\,$associative 3-form$\,$

Original article:

• Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) (doi:10.24033/bsmf.1464)

• Carlos Olmos, A Geometric Proof of the Berger Holonomy Theorem, Annals of Mathematics Second Series, Vol. 161, No. 1 (Jan., 2005), pp. 579-588 (10 pages) (jstor:3597350)