nLab special holonomy

Contents

Context

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Differential cohomology

Contents

Idea

For XX a space equipped with a GG-connection on a bundle \nabla (for some Lie group GG) and for xXx \in X any point, the parallel transport of \nabla assigns to each curve γ:S 1X\gamma : S^1 \to X in XX starting and ending at xx an element hol (γ)G hol_\nabla(\gamma) \in G: the holonomy of \nabla along that curve.

The holonomy group of \nabla at xx is the subgroup of GG on these elements.

If \nabla is the Levi-Civita connection on a Riemannian manifold and the holonomy group is a proper subgroup HH of the special orthogonal group, one says that (X,g)(X,g) is a manifold of special holonomy .

Properties

Classification

Berger's theorem says that if a manifold XX is

then the possible special holonomy groups are the following

classification of special holonomy manifolds by Berger's theorem:

\,G-structure\,\,special holonomy\,\,dimension\,\,preserved differential form\,
\,\mathbb{C}\,\,Kähler manifold\,\,U(n)\,2n\,2n\,\,Kähler forms ω 2\omega_2\,
\,Calabi-Yau manifold\,\,SU(n)\,2n\,2n\,
\,\mathbb{H}\,\,quaternionic Kähler manifold\,\,Sp(n).Sp(1)\,4n\,4n\,ω 4=ω 1ω 1+ω 2ω 2+ω 3ω 3\,\omega_4 = \omega_1\wedge \omega_1+ \omega_2\wedge \omega_2 + \omega_3\wedge \omega_3\,
\,hyper-Kähler manifold\,\,Sp(n)\,4n\,4n\,ω=aω 2 (1)+bω 2 (2)+cω 2 (3)\,\omega = a \omega^{(1)}_2+ b \omega^{(2)}_2 + c \omega^{(3)}_2\, (a 2+b 2+c 2=1a^2 + b^2 + c^2 = 1)
𝕆\,\mathbb{O}\,\,Spin(7) manifold\,\,Spin(7)\,\,8\,\,Cayley form\,
\,G2 manifold\,\,G2\,7\,7\,\,associative 3-form\,

Relation to GG-reductions

A manifold having special holonomy means that there is a corresponding reduction of structure groups.

Theorem

Let (X,g)(X,g) be a connected Riemannian manifold of dimension nn with holonomy group Hol(g)O(n)Hol(g) \subset O(n).

For GO(n)G \subset O(n) some other subgroup, (X,g)(X,g) admits a torsion-free G-structure precisely if Hol(g)Hol(g) is conjugate to a subgroup of GG.

Moreover, the space of such GG-structures is the coset G/LG/L, where LL is the group of elements suchthat conjugating Hol(g)Hol(g) with them lands in GG.

This appears as (Joyce prop. 3.1.8)

Via 𝕆\mathbb{O}-Riemannian manifolds

\;normed division algebra\;𝔸\;\mathbb{A}\;\;Riemannian 𝔸\mathbb{A}-manifolds\;\;special Riemannian 𝔸\mathbb{A}-manifolds\;
\;real numbers\;\;\mathbb{R}\;\;Riemannian manifold\;\;oriented Riemannian manifold\;
\;complex numbers\;\;\mathbb{C}\;\;Kähler manifold\;\;Calabi-Yau manifold\;
\;quaternions\;\;\mathbb{H}\;\;quaternion-Kähler manifold\;\;hyperkähler manifold\;
\;octonions\;𝕆\;\mathbb{O}\;\;Spin(7)-manifold\;\;G2-manifold\;

(Leung 02)

References

General

The classification in Berger's theorem is due to

  • Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des

    variétés riemanniennes_, Bull. Soc. Math. France 83 (1955)

For more see

  • Nigel Hitchin, Special holonomy and beyond, Clay Mathematics Proceedings (pdf)

  • Dominic Joyce, Compact manifolds with special holonomy , Oxford Mathematical Monographs (2000)

  • Luis J. Boya, Special Holonomy Manifolds in Physics Monografías de la Real Academia de Ciencias de Zaragoza. 29: 37–47, (2006). (pdf)

Discussion of the relation to Killing spinors includes

Discussion in terms of Riemannian geometry modeled on normed division algebras is in

See also

  • Hans Freudenthal, Lie groups in the foundations of geometry, Advances in Mathematics, volume 1, (1965) pp. 145 - 190 (dspace)

On special holonomy orbifolds:

  • Jeff Cheeger, Gang Tian, Anti-Self-Duality of Curvature and Degeneration of Metrics with Special Holonomy, Communications in Mathematical Physics volume 255, pages 391–417 (2005) (doi:10.1007/s00220-004-1279-0)

In supergravity and string theory

Discussion of special holonomy manifolds in supergravity and superstring theory as fiber-spaces for KK-compactifications preserving some number of supersymmetries:

Last revised on July 15, 2020 at 19:33:18. See the history of this page for a list of all contributions to it.