# nLab special holonomy

Contents

### Context

#### Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

• (shape modality $\dashv$ flat modality $\dashv$ sharp modality)

$(\esh \dashv \flat \dashv \sharp )$

• dR-shape modality$\dashv$ dR-flat modality

$\esh_{dR} \dashv \flat_{dR}$

infinitesimal cohesion

tangent cohesion

differential cohesion

singular cohesion

$\array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }$

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

#### Differential cohomology

differential cohomology

# Contents

## Idea

For $X$ a space equipped with a $G$-connection on a bundle $\nabla$ (for some Lie group $G$) and for $x \in X$ any point, the parallel transport of $\nabla$ assigns to each curve $\gamma : S^1 \to X$ in $X$ starting and ending at $x$ an element $hol_\nabla(\gamma) \in G$: the holonomy of $\nabla$ along that curve.

The holonomy group of $\nabla$ at $x$ is the subgroup of $G$ on these elements.

If $\nabla$ is the Levi-Civita connection on a Riemannian manifold and the holonomy group is a proper subgroup $H$ of the special orthogonal group, one says that $(X,g)$ is a manifold of special holonomy .

## Properties

### Classification

Berger's theorem says that if a manifold $X$ is

then the possible special holonomy groups are the following

classification of special holonomy manifolds by Berger's theorem:

$\,$G-structure$\,$$\,$special holonomy$\,$$\,$dimension$\,$$\,$preserved differential form$\,$
$\,\mathbb{C}\,$$\,$Kähler manifold$\,$$\,$U(n)$\,$$\,2n\,$$\,$Kähler forms $\omega_2\,$
$\,$Calabi-Yau manifold$\,$$\,$SU(n)$\,$$\,2n\,$
$\,\mathbb{H}\,$$\,$quaternionic Kähler manifold$\,$$\,$Sp(n).Sp(1)$\,$$\,4n\,$$\,\omega_4 = \omega_1\wedge \omega_1+ \omega_2\wedge \omega_2 + \omega_3\wedge \omega_3\,$
$\,$hyper-Kähler manifold$\,$$\,$Sp(n)$\,$$\,4n\,$$\,\omega = a \omega^{(1)}_2+ b \omega^{(2)}_2 + c \omega^{(3)}_2\,$ ($a^2 + b^2 + c^2 = 1$)
$\,\mathbb{O}\,$$\,$Spin(7) manifold$\,$$\,$Spin(7)$\,$$\,$8$\,$$\,$Cayley form$\,$
$\,$G₂ manifold$\,$$\,$G₂$\,$$\,7\,$$\,$associative 3-form$\,$

### Relation to $G$-reductions

A manifold having special holonomy means that there is a corresponding reduction of structure groups.

###### Theorem

Let $(X,g)$ be a connected Riemannian manifold of dimension $n$ with holonomy group $Hol(g) \subset O(n)$.

For $G \subset O(n)$ some other subgroup, $(X,g)$ admits a torsion-free G-structure precisely if $Hol(g)$ is conjugate to a subgroup of $G$.

Moreover, the space of such $G$-structures is the coset $G/L$, where $L$ is the group of elements suchthat conjugating $Hol(g)$ with them lands in $G$.

This appears as Joyce 2000, prop. 3.1.8.

### Via $\mathbb{O}$-Riemannian manifolds

$\;$normed division algebra$\;$$\;\mathbb{A}\;$$\;$Riemannian $\mathbb{A}$-manifolds$\;$$\;$special Riemannian $\mathbb{A}$-manifolds$\;$
$\;$real numbers$\;$$\;\mathbb{R}\;$$\;$Riemannian manifold$\;$$\;$oriented Riemannian manifold$\;$
$\;$complex numbers$\;$$\;\mathbb{C}\;$$\;$Kähler manifold$\;$$\;$Calabi-Yau manifold$\;$
$\;$quaternions$\;$$\;\mathbb{H}\;$$\;$quaternion-Kähler manifold$\;$$\;$hyperkähler manifold$\;$
$\;$octonions$\;$$\;\mathbb{O}\;$$\;$Spin(7)-manifold$\;$$\;$G₂-manifold$\;$

(Leung 02)

## References

### General

The classification expressed by Berger's theorem is due to:

• Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955)

For more see:

• Simon Salamon, Riemannian Geometry and Holonomy Groups, Research Notes in Mathematics 201, Longman (1989)

• Nigel Hitchin, Special holonomy and beyond, Clay Mathematics Proceedings (pdf)

• Dominic Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs (2000) [ISBN:9780198506010]

• Luis J. Boya, Special holonomy manifolds in physics Monografías de la Real Academia de Ciencias de Zaragoza. 29: 37–47, (2006). (pdf)

Discussion of the relation to Killing spinors includes

Discussion in terms of Riemannian geometry modeled on normed division algebras is in