nLab
hyper-Kähler manifold

Contents

classification of special holonomy manifolds by Berger's theorem:

G-structurespecial holonomydimensionpreserved differential form
\mathbb{C}Kähler manifoldU(k)2k2kKähler forms ω 2\omega_2
Calabi-Yau manifoldSU(k)2k2k
\mathbb{H}quaternionic Kähler manifoldSp(k)Sp(1)4k4kω 4=ω 1ω 1+ω 2ω 2+ω 3ω 3\omega_4 = \omega_1\wedge \omega_1+ \omega_2\wedge \omega_2 + \omega_3\wedge \omega_3
hyper-Kähler manifoldSp(k)4k4kω=aω 2 (1)+bω 2 (2)+cω 2 (3)\omega = a \omega^{(1)}_2+ b \omega^{(2)}_2 + c \omega^{(3)}_2 (a 2+b 2+c 2=1a^2 + b^2 + c^2 = 1)
𝕆\mathbb{O}Spin(7) manifoldSpin(7)8Cayley form
G2 manifoldG277associative 3-form

References

Last revised on May 6, 2018 at 02:13:07. See the history of this page for a list of all contributions to it.