nLab Spin(7)

Contents

Context

Group Theory

group theory

Classical groups

Finite groups

Group schemes

Topological groups

Lie groups

Super-Lie groups

Higher groups

Cohomology and Extensions

Related concepts

Contents

Idea

The spin group in dimension $n = 7$.

Properties

Subgroups and Supgroups

Proposition

(Spin(7)-subgroups in Spin(8))

There are precisely 3 conjugacy classes of Spin(7)-subgroups inside Spin(8), and the triality group $Out(Spin(8))$ acts transitively on these three classes.

Proposition

(G₂ is intersection of Spin(7)-subgroups of Spin(8))

The intersection inside Spin(8) of any two Spin(7)-subgroups from distinct conjugacy classes of subgroups (according to Prop. ) is the exceptional Lie group G₂, hence we have pullback squares of the form

Proposition

We have the following commuting diagram of subgroup inclusions, where each square exhibits a pullback/fiber product, hence an intersection of subgroups:

Here in the bottom row we have the Lie groups

Spin(5)$\hookrightarrow$ Spin(6) $\hookrightarrow$ Spin(7) $\hookrightarrow$ Spin(8)

with their canonical subgroup-inclusions, while in the top row we have

SU(2)$\hookrightarrow$ SU(3) $\hookrightarrow$ G₂ $\hookrightarrow$ Spin(7)

and the right vertical inclusion $\iota'$ is the one of the two non-standard inclusions, according to Prop. .

Proof

The square on the right is that from Prop. .

The square in the middle is Varadarajan 01, Lemma 9 on p. 10.

The statement also follows with Onishchik 93, Table 2, p. 144:

Coset spaces

Proposition

(coset space of Spin(7) by G₂ is 7-sphere)

Consider the canonical action of Spin(7) on the unit sphere in $\mathbb{R}^8$ (the 7-sphere),

1. This action is is transitive;

2. the stabilizer group of any point on $S^7$ is G₂;

3. all G₂-subgroups of Spin(7) arise this way, and are all conjugate to each other.

Hence the coset space of Spin(7) by G₂ is the 7-sphere

$Spin(7)/G_2 \;\simeq\; S^7 \,.$

coset space-structures on n-spheres:

standard:
$S^{n-1} \simeq_{diff} SO(n)/SO(n-1)$this Prop.
$S^{2n-1} \simeq_{diff} SU(n)/SU(n-1)$this Prop.
$S^{4n-1} \simeq_{diff} Sp(n)/Sp(n-1)$this Prop.
exceptional:
$S^7 \simeq_{diff} Spin(7)/G_2$Spin(7)/G₂ is the 7-sphere
$S^7 \simeq_{diff} Spin(6)/SU(3)$since Spin(6) $\simeq$ SU(4)
$S^7 \simeq_{diff} Spin(5)/SU(2)$since Sp(2) is Spin(5) and Sp(1) is SU(2), see Spin(5)/SU(2) is the 7-sphere
$S^6 \simeq_{diff} G_2/SU(3)$G₂/SU(3) is the 6-sphere
$S^15 \simeq_{diff} Spin(9)/Spin(7)$Spin(9)/Spin(7) is the 15-sphere

(from FSS 19, 3.4)

$G$-Structure and exceptional geometry

Spin(8)-subgroups and reductions to exceptional geometry

reductionfrom spin groupto maximal subgroup
Spin(7)-structureSpin(8)Spin(7)
G₂-structureSpin(7)G₂
CY3-structureSpin(6)SU(3)
SU(2)-structureSpin(5)SU(2)
generalized reductionfrom Narain groupto direct product group
generalized Spin(7)-structure$Spin(8,8)$$Spin(7) \times Spin(7)$
generalized G₂-structure$Spin(7,7)$$G_2 \times G_2$
generalized CY3$Spin(6,6)$$SU(3) \times SU(3)$

Dynkin labelsp. orth. groupspin grouppin groupsemi-spin group
SO(2)Spin(2)Pin(2)
B1SO(3)Spin(3)Pin(3)
D2SO(4)Spin(4)Pin(4)
B2SO(5)Spin(5)Pin(5)
D3SO(6)Spin(6)
B3SO(7)Spin(7)
D4SO(8)Spin(8)SO(8)
B4SO(9)Spin(9)
D5SO(10)Spin(10)
B5SO(11)Spin(11)
D6SO(12)Spin(12)
$\vdots$$\vdots$
D8SO(16)Spin(16)SemiSpin(16)
$\vdots$$\vdots$
D16SO(32)Spin(32)SemiSpin(32)

classification of special holonomy manifolds by Berger's theorem:

$\,$G-structure$\,$$\,$special holonomy$\,$$\,$dimension$\,$$\,$preserved differential form$\,$
$\,\mathbb{C}\,$$\,$Kähler manifold$\,$$\,$U(n)$\,$$\,2n\,$$\,$Kähler forms $\omega_2\,$
$\,$Calabi-Yau manifold$\,$$\,$SU(n)$\,$$\,2n\,$
$\,\mathbb{H}\,$$\,$quaternionic Kähler manifold$\,$$\,$Sp(n).Sp(1)$\,$$\,4n\,$$\,\omega_4 = \omega_1\wedge \omega_1+ \omega_2\wedge \omega_2 + \omega_3\wedge \omega_3\,$
$\,$hyper-Kähler manifold$\,$$\,$Sp(n)$\,$$\,4n\,$$\,\omega = a \omega^{(1)}_2+ b \omega^{(2)}_2 + c \omega^{(3)}_2\,$ ($a^2 + b^2 + c^2 = 1$)
$\,\mathbb{O}\,$$\,$Spin(7) manifold$\,$$\,$Spin(7)$\,$$\,$8$\,$$\,$Cayley form$\,$
$\,$G₂ manifold$\,$$\,$G₂$\,$$\,7\,$$\,$associative 3-form$\,$

References

• A. L. Onishchik (ed.) Lie Groups and Lie Algebras

• I. A. L. Onishchik, E. B. Vinberg, Foundations of Lie Theory,

• II. V. V. Gorbatsevich, A. L. Onishchik, Lie Transformation Groups

Encyclopaedia of Mathematical Sciences, Volume 20, Springer 1993

• Veeravalli Varadarajan, Spin(7)-subgroups of SO(8) and Spin(8), Expositiones Mathematicae Volume 19, Issue 2, 2001, Pages 163-177 (doi:10.1016/S0723-0869(01)80027-X, pdf)

Last revised on July 18, 2024 at 11:23:46. See the history of this page for a list of all contributions to it.