geometric quantization higher geometric quantization
geometry of physics: Lagrangians and Action functionals + Geometric Quantization
prequantum circle n-bundle = extended Lagrangian
prequantum 1-bundle = prequantum circle bundle, regularcontact manifold,prequantum line bundle = lift of symplectic form to differential cohomology
under construction
Given a suitable Lie algebra a Knizhnik-Zamolodchikov equation is the equation expressing flatness of certain class of vector bundles with connection on the configuration space of points of distinct points in the plane . It appeared in the study of Wess-Zumino-Novikov-Witten model (WZNW model) of 2d CFT in (Knizhnik-Zamolodchikov 84).
The Knizhnik-Zamolodchikov equation involves what is called the Knizhnik-Zamolodchikov connection and it is related to monodromy representations of Artin’s braid group.
In the standard variant, the basic data involves a given complex simple Lie algebra with a fixed bilinear invariant polynomial (the Killing form) and (not necessarily finite-dimensional) representations of . Let .
(…)
The existence of the Knizhnik-Zamolodchikov connection can naturally be understood from the holographic quantization of the WZW model on the Lie group by geometric quantization of -Chern-Simons theory:
As discussed there, for a 2-dimensional manifold , a choice of polarization of the phase space of 3d Chern-Simons theory on is naturally induced by a choice of conformal structure on . Once such a choice is made, the resulting space of quantum states of the Chern-Simons theory over is naturally identified with the space of conformal blocks of the WZW model 2d CFT on the Riemann surface .
But since, from the point of view of the 3d Chern-Simons theory, the polarization is an arbitrary choice, the space of quantum states should not depend on this choice, up to specified equivalence. Formally this means that as varies (over the moduli space of conformal structures on ) the should form a vector bundle on this moduli space of conformal structures which is equipped with a flat connection whose parallel transport hence provides equivalences between between the fibers of this vector bundle.
This flat connection is the Knizhnik-Zamolodchikov connection. This was maybe first realized and explained in (Witten 89).
For the Definition of the Knizhnik-Zamolodchikov connection we need the following notation:
configuration spaces of points
For write
for the ordered configuration space of n points in the plane, regarded as a smooth manifold.
Identifying the plane with the complex plane , we have canonical holomorphic coordinate functions
for the quotient vector space of the linear span of horizontal chord diagrams on strands by the 4T relations (infinitesimal braid relations), regarded as an associative algebra under concatenation of strands (here).
The universal Knizhnik-Zamolodchikov form is the horizontal chord diagram-algebra valued differential form (3) on the configuration space of points (1)
given in the canonical coordinates (2) by:
where
is the horizontal chord diagram with exactly one chord, which stretches between the th and the th strand.
Regarded as a connection form for a connection on a vector bundle, this defines the universal Knizhnik-Zamolodchikov connection , with covariant derivative
for any smooth function
with values in modules over the algebra of horizontal chord diagrams modulo 4T relations.
The condition of covariant constancy
is called the Knizhnik-Zamolodchikov equation.
Finally, given a metric Lie algebra and a tuple of Lie algebra representations
the corresponding endomorphism-valued Lie algebra weight system
turns the universal Knizhnik-Zamolodchikov form (4) into a endomorphism ring-valued differential form
The universal formulation (4) is highlighted for instance in Bat-Natan 95, Section 4.2, Lescop 00, p. 7. Most authors state the version after evaluation in a Lie algebra weight system, e.g. Kohno 14, Section 5.
(Knizhnik-Zamolodchikov connection is flat)
The Knizhnik-Zamolodchikov connection (Def. ) is flat:
(Kontsevich integral for braids)
The Dyson formula for the holonomy of the Knizhnik-Zamolodchikov connection (Def. ) is called the Kontsevich integral on braids.
(e.g. Lescop 00, side-remark 1.14)
The original articles:
Vadim Knizhnik, Alexander Zamolodchikov, Current algebra and Wess–Zumino model in two-dimensions, Nucl. Phys. B247, 83–103 (1984) doi, MR87h:81129
Alexander Belavin, Alexander Polyakov, Alexander Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory (1984) Nucl. Phys. B 241 (2): 333–80.
Daniel Friedan, Stephen Shenker, The analytic geometry of two-dimensional conformal field theory, Nuclear Physics B281 (1987) (pdf)
Textbook account, specifically for the /-WZW model:
Relation to braid representations:
Ivan Todorov, Ludmil Hadjiivanov, Monodromy Representations of the Braid Group, Phys. Atom. Nucl. 64 (2001) 2059-2068; Yad.Fiz. 64 (2001) 2149-2158 [arXiv:hep-th/0012099, doi:10.1134/1.1432899]
Ivan Marin, Sur les représentations de Krammer génériques, Annales de l’Institut Fourier, 57 6 (2007) 1883-1925 [numdam:AIF_2007__57_6_1883_0]
Anton Alekseev, Florian Naef, Muze Ren. Generalized Pentagon Equations (2024). (arXiv:2402.19138).
and understood in terms of anyon statistics:
The generalization to higher genus surfaces:
D. Bernard, On the Wess-Zumino-Witten models on the torus, Nucl. Phys. B 303 77-93 (1988)
D. Bernard, On the Wess-Zumino-Witten models on Riemann surfaces, Nucl. Phys. B 309 145-174 (1988)
The interpretation of this connection in terms of the geometric quantization of Chern-Simons theory/Wess-Zumino-Witten model:
Review:
Ivan Cherednik, Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras, Mathematical Society of Japan Memoirs 1998 (1998) 1-96 doi:10.2969/msjmemoirs/00101C010
(in relation to Hecke algebras)
Toshitake Kohno, §1.5 and §2.1 in: Conformal field theory and topology, transl. from the 1998 Japanese original by the author. Translations of Mathematical Monographs 210. Iwanami Series in Modern Mathematics. Amer. Math. Soc. 2002 AMS:mmono-210
(relating to conformal blocks and braid representations)
Ralph Blumenhagen, Erik Plauschinn, §3.5 of: Introduction to Conformal Field Theory – With Applications to String Theory, Lecture Notes in Physics 779, Springer (2009) [doi:10.1007/978-3-642-00450-6]
(in view of 2d CFT and string theory)
A quick review of the Knizhnik-Zamolodchikov equation in the context of an introduction to WZW model CFT is in
A review of the definition of the Knizhnik-Zamolodchikov connection on the moduli space of genus=0 surfaces with marked points:
In relation to hypergeometric functions and quantum groups (for more see the references below):
Alexander Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Adv. Ser. in Math. Phys. 21, World Sci. Publ. 1995. x+371 pp. (doi:10.1142/2467)
V. Tarasov, Alexander Varchenko, Geometry of -hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque 246 (1997), vi+135 pp. (arXiv:q-alg/9703044, numdam:AST_1997__246__R1_0)
On KZ-equations controlling codimension defects in D=4 super Yang-Mills theory:
Nikita Nekrasov, BPS/CFT correspondence V: BPZ and KZ equations from -characters [arXiv:1711.11582]
Nikita Nekrasov, Alexander Tsymbaliuk, Surface defects in gauge theory and KZ equation, Letters in Mathematical Physics 112 28 (2022) [arXiv:2103.12611, doi:10.1007/s11005-022-01511-8]
Saebyeok Jeong, Norton Lee, Nikita Nekrasov, Intersecting defects in gauge theory, quantum spin chains, and Knizhnik-Zamolodchikov equations, J. High Energ. Phys. 2021 120 (2021) [arXiv:2103.17186, doi:10.1007/JHEP10(2021)120]
See also
Wikipedia, Knizhnik-Zamolodchikov equations
I. B. Frenkel, N. Yu. Reshetikihin, Quantum affine algebras and holonomic diference equations, Comm. Math. Phys. 146 (1992), 1-60, MR94c:17024
Valerio Toledano-Laredo, Flat connections and quantum groups, Acta Appl. Math. 73 (2002), 155-173, math.QA/0205185
Toshitake Kohno, Conformal field theory and topology, transl. from the 1998 Japanese original by the author. Translations of Mathematical Monographs 210. Iwanami Series in Modern Mathematics. Amer. Math. Soc. 2002 AMS:mmono-210
P. Etingof, N. Geer, Monodromy of trigonometric KZ equations, math.QA/0611003
Valerio Toledano-Laredo, A Kohno-Drinfeld theorem for quantum Weyl groups, math.QA/0009181
A. Tsuchiya, Y. Kanie, Vertex operators in conformal field theory on and monodromy representations of braid group, Adv. Stud. Pure Math. 16, pp. 297–372 (1988); Erratum in vol. 19, 675–682
C. Kassel, Quantum groups, Grad. Texts in Math. 155, Springer 1995
V. Chari, , A. Pressley, A guide to quantum groups, Camb. Univ. Press 1994В.
А. Голубева, В. П. Лексин, Алгебраическая характеризация монодромии обобщенных уравнений Книжника–Замолодчикова типа , Монодромия в задачах алгебраической геометрии и дифференциальных уравнений, Сборник статей, Тр. МИАН, 238, Наука, М., 2002, 124–143, pdf; V. A. Golubeva, V. P. Leksin, “Algebraic Characterization of the Monodromy of Generalized Knizhnik–Zamolodchikov Equations of Bn Type”, Proc. Steklov Inst. Math., 238 (2002), 115–133
V. A. Golubeva, V. P. Leksin, Rigidity theorems for multiparametric deformations of algebraic structures, associated with the Knizhnik-Zamolodchikov equations, Journal of Dynamical and Control Systems, 13:2 (2007), 161–171, MR2317452
V. A. Golubeva, Integrability conditions for two–parameter Knizhnik–Zamolodchikov equations of type in the tensor and spinor cases, Doklady Mathematics, 79:2 (2009), 147–149
V. G. Drinfelʹd, Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations, Problems of modern quantum field theory (Alushta, 1989), 1–13, Res. Rep. Phys., Springer 1989.
R. Rimányi, V. Tarasov, A. Varchenko, P. Zinn-Justin, Extended Joseph polynomials, quantized conformal blocks, and a -Selberg type integral, arxiv/1110.2187
E. Mukhin, V. Tarasov, A. Varchenko, KZ characteristic variety as the zero set of classical Calogero-Moser Hamiltonians, arxiv/1201.3990
On the flat vector bundles underlying the KZ-equation:
A 2-dimensional higher variant (categorification) of the Knizhnik-Zamolodchikov connection via higher parallel transport:
The “hypergeometric integral” construction of conformal blocks for affine Lie algebra/WZW model-2d CFTs and of more general solutions to the Knizhnik-Zamolodchikov equation, via twisted de Rham cohomology of configuration spaces of points, originates with:
Vadim Schechtman, Alexander Varchenko, Integral representations of N-point conformal correlators in the WZW model, Max-Planck-Institut für Mathematik, (1989) Preprint MPI/89- cds:1044951
Etsuro Date, Michio Jimbo, Atsushi Matsuo, Tetsuji Miwa, Hypergeometric-type integrals and the -Knizhnik-Zamolodchikov equation, International Journal of Modern Physics B 04 05 (1990) 1049-1057 doi:10.1142/S0217979290000528
Atsushi Matsuo, An application of Aomoto-Gelfand hypergeometric functions to the Knizhnik-Zamolodchikov equation, Communications in Mathematical Physics 134 (1990) 65–77 doi:10.1007/BF02102089
Vadim Schechtman, Alexander Varchenko, Hypergeometric solutions of Knizhnik-Zamolodchikov equations, Lett. Math. Phys. 20 (1990) 279–283 doi:10.1007/BF00626523
Vadim Schechtman, Alexander Varchenko, Arrangements of hyperplanes and Lie algebra homology, Inventiones mathematicae 106 1 (1991) 139-194 dml:143938, pdf
following precursor observations due to:
Vladimir S. Dotsenko, Vladimir A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nuclear Physics B 240 3 (1984) 312-348 doi:10.1016/0550-3213(84)90269-4
Philippe Christe, Rainald Flume, The four-point correlations of all primary operators of the conformally invariant -model with Wess-Zumino term, Nuclear Physics B
282 (1987) 466-494 doi:10.1016/0550-3213(87)90693-6
The proof that for rational levels this construction indeed yields conformal blocks is due to:
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by correlators in Wess-Zumino-Witten models, Lett Math Phys 20 (1990) 291–297 doi:10.1007/BF00626525
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by hypergeometric correlators in WZW models. I, Commun. Math. Phys. 163 (1994) 173–184 doi:10.1007/BF02101739
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by hypergeometric correlators in WZW models. II, Comm. Math. Phys. 170 1 (1995) 219-247 [euclid:cmp/1104272957]
Review:
Alexander Varchenko, Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups, Advanced Series in Mathematical Physics 21, World Scientific 1995 (doi:10.1142/2467)
Ivan Cherednik, Section 8.2 of: Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras, Mathematical Society of Japan Memoirs 1998 (1998) 1-96 doi:10.2969/msjmemoirs/00101C010
Pavel Etingof, Igor Frenkel, Alexander Kirillov, Lecture 7 in: Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations, Mathematical surveys and monographs 58, American Mathematical Society (1998) ISBN:978-1-4704-1285-2, review pdf
Toshitake Kohno, Homological representations of braid groups and KZ connections, Journal of Singularities 5 (2012) 94-108 doi:10.5427/jsing.2012.5g, pdf
Toshitake Kohno, Local Systems on Configuration Spaces, KZ Connections and Conformal Blocks, Acta Math Vietnam 39 (2014) 575–598 doi:10.1007%2Fs40306-014-0088-6, pdf
Toshitake Kohno, Introduction to representation theory of braid groups, Peking 2018 pdf, pdf
(motivation from braid representations)
See also:
Alexander Varchenko, Asymptotic solutions to the Knizhnik-Zamolodchikov equation and crystal base, Comm. Math. Phys. 171 1 (1995) 99-137 arXiv:hep-th/9403102, doi:10.1007/BF02103772
Edward Frenkel, David Ben-Zvi, Section 14.3 in: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs 88, AMS 2004 ISBN:978-1-4704-1315-6, web
This “hypergeometric” construction uses results on the twisted de Rham cohomology of configuration spaces of points due to:
Peter Orlik, Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent Math 56 (1980) 167–189 doi:10.1007/BF01392549
Kazuhiko Aomoto, Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan 39 2 (1987) 191-208 doi:10.2969/jmsj/03920191
Hélène Esnault, Vadim Schechtman, Eckart Viehweg, Cohomology of local systems on the complement of hyperplanes, Inventiones mathematicae 109.1 (1992) 557-561 pdf
Vadim Schechtman, H. Terao, Alexander Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, Journal of Pure and Applied Algebra 100 1–3 (1995) 93-102 arXiv:hep-th/9411083, doi:10.1016/0022-4049(95)00014-N
also:
Peter Orlik, Hypergeometric integrals and arrangements, Journal of Computational and Applied Mathematics 105 (1999) 417–424 doi:10.1016/S0377-0427(99)00036-9, pdf
Daniel C. Cohen, Peter Orlik, Arrangements and local systems, Math. Res. Lett. 7 (2000) 299-316 arXiv:math/9907117, doi:10.4310/MRL.2000.v7.n3.a5
reviewed in:
Discussion for the special case of level (cf. at logarithmic CFT – Examples):
Fedor A. Smirnov, Remarks on deformed and undeformed Knizhnik-Zamolodchikov equations, arXiv:hep-th/9210051
Fedor A. Smirnov, Form factors, deformed Knizhnik-Zamolodchikov equations and finite-gap integration, Communications in Mathematical Physics 155 (1993) 459–487 doi:10.1007/BF02096723, arXiv:hep-th/9210052
S. Pakuliak, A. Perelomov, Relation Between Hyperelliptic Integrals, Mod. Phys. Lett. 9 19 (1994) 1791-1798 doi:10.1142/S0217732394001647
Interpretation of the hypergeometric construction as happening in twisted equivariant differential K-theory, showing that the K-theory classification of D-brane charge and the K-theory classification of topological phases of matter both reflect braid group representations as expected for defect branes and for anyons/topological order, respectively:
Last revised on August 21, 2024 at 08:53:55. See the history of this page for a list of all contributions to it.