geometric representation theory
representation, 2-representation, ∞-representation
Grothendieck group, lambda-ring, symmetric function, formal group
principal bundle, torsor, vector bundle, Atiyah Lie algebroid
Eilenberg-Moore category, algebra over an operad, actegory, crossed module
Be?linson-Bernstein localization?
transfinite arithmetic, cardinal arithmetic, ordinal arithmetic
prime field, p-adic integer, p-adic rational number, p-adic complex number
arithmetic geometry, function field analogy
Let
be a p-adic field with denoting its residue field;
denotes the valuation of the corresponding element of under the isomorphism of local class field theory.
(Weil-Deligne representation)
A Weil-Deligne representation is a pair where
and
satisfying
for all .
John Tate, Section 4 in: Number theoretic background, in: Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore. (1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 3–26. Amer. Math. Soc., Providence, RI (ISBN:978-0-8218-3371-1, pdf, pdf)
Robin Zhang, Weil-Deligne Representations I – Local Langlands seminar (pdf, pdf)
Created on April 23, 2021 at 06:20:40. See the history of this page for a list of all contributions to it.