There are many notions of a character for an algebraic structure, often topologized.

Character on a group

A character on the group GG is a homomorphism into the group of units of the ground field. Regarding that the codomain is abelian, the collection of characters is itself an abelian group under the pointwise multiplication, this is called the character lattice

Hom(G,k ×) Hom(G,k^\times)

of the group. Similarly the cocharacter lattice is Hom(k ×,G)Hom(k^\times, G).

For more see at group character.

For topological groups one considers continuous characters. Specifically, for a locally compact Hausdorff group GG (often further assumed to be an abelian group), a character of GG is continuous homomorphism to the circle group /\mathbb{R}/\mathbb{Z}. If GG is profinite, then this is the same as an continuous homomorphism to the discrete group /\mathbb{Q}/\mathbb{Z}. (See MO.)

Character of a representation

In representation theory, one defines the character of a representation ρ:GEnd(V)\rho\colon G\to End(V) to be the function on GG given by gTrρ(g)g \mapsto Tr \rho(g), whenever the trace in VV makes sense (e.g. when VV is finite-dimensional). Since such a function is invariant under conjugation, we may equivalently consider it a function on the set of conjugacy classes of elements in GG.

Sometimes we also extend a character linearly to the free vector space on the set of conjugacy classes. This version of the character can be identified with the bicategorical trace of the identity map of the representation, considered as a k[G]k[G]-kk-module.

There is a different notion of an infinitesimal character in Harish–Chandra theory and also a notion of the formal character.

There are important formulas concerning characters in representation theory, like Weyl character formula, Kirillov character formula, Demazure character formula and so on. There is also a formula for the induced character of an induced representation.

Left and right characters on a ring over a ring

Let AA be a unital, not necessarily commutative, ring (or, more generally, kk-algebra for kk-commutative); then a monoid in a category of AA-bimodules (which are respectively also compatibly kk-modules), is called an AA-ring. In other words an AA-ring BB is an object in the coslice category ARingA\Ring; it is thus a ring BB equipped with multiplication μ B\mu_B and a map η:AB\eta: A\to B of rings.

A left character of an AA-ring (B,μ B,η B)(B,\mu_B,\eta_B) is a map χ:BA\chi:B\to A such that

(i) (left AA-linearity) χ(η(a)b)=aχ(b)\chi(\eta(a)b) = a\chi(b) for all aAa\in A, bBb\in B

(ii) (associativity) χ(bb)=χ(b(ηχ)(b))\chi(b b') = \chi(b (\eta\circ\chi)(b')) for all b,bBb,b'\in B

(iii) (unitality) χ(1 B)=χ(1 A)\chi(1_B) = \chi(1_A)

where we denoted multiplication in AA and in BB by concatenation. The conditions on χ\chi can be restated as the requirement that the map BAAB\otimes A\to A given by baχ(bη(a))b\otimes a\mapsto \chi(b\eta(a)) is a BB-action extending the left regular AA-action (i.e. the multiplication on AA considered as a left action).

Dually, a right character of an AA-ring (B,μ B,η B)(B,\mu_B,\eta_B) is a map χ:BA\chi:B\to A such that

(i) (right AA-linearity) χ(bη(a))=χ(b)a\chi(b\eta(a)) = \chi(b)a for all aAa\in A, bBb\in B

(ii) (associativity) χ(bb)=χ((ηχ)(b)b)\chi(b b') = \chi((\eta\circ\chi)(b) b') for all b,bBb,b'\in B

(iii) (unitality) χ(1 B)=χ(1 A)\chi(1_B) = \chi(1_A)

This is in turn equivalent to extending the right regular action of AA to the action of BB on AA.

Character of a topological space

The character χ(X,x)\chi(X,x) of a topological space XX at a point xx is the minimal cardinality of a local basis of neighborhoods of point xx (local basis of topology on XX) if it is infinite and aleph zero otherwise. The character of a topological space is the supremum of χ(X,x)\chi(X,x) when xx runs through XX.


Character rings of compact Lie groups are discussed in

  • Graeme Segal, The representation ring of a compact Lie group, Publications Mathématiques de l’Institut des Hautes Études Scientifiques

    January 1968, Volume 34, Issue 1, pp 113-128 (NUMDAM)

  • Masaru Tackeuchi, A remark on the character ring of a compact Lie group, J. Math. Soc. Japan Volume 23, Number 4 (1971), 555-705 (Euclid)

  • Troels Roussauc Johansen, Character Theory for Finite Groups and Compact Lie Groups pdf

Discussion in the more general context of equivariant complex oriented cohomology theory (transchromatic character) is in

Last revised on September 6, 2016 at 11:24:30. See the history of this page for a list of all contributions to it.