nLab complex conjugation

Redirected from "complex conjugate".
Contents

Context

Algebra

Complex geometry

Contents

Idea

Complex conjugation is the operation on complex numbers which reverses the sign of the imaginary part, hence the function

() * a+ib aibAAAAAAfora,b. \array{ \mathbb{C} & \overset{ \;\;\; (-)^\ast \;\;\; }{ \longrightarrow } & \mathbb{C} \\ a + \mathrm{i} b &\mapsto& a - \mathrm{i} b } \phantom{AAAAAA} for\;\; a,b \in \mathbb{R} \,.

More generally, the anti-involution on any star-algebra may be referred to as conjugation. For instance one speaks of quaternionic conjugation for the analogous operation on quaternions:

() * a+ib+jc+kd aibjckdAAAAAAfora,b,c,d. \array{ \mathbb{H} & \overset{ \;\;\; (-)^\ast \;\;\; }{ \longrightarrow } & \mathbb{H} \\ a + \mathrm{i} b + \mathrm{j} c + \mathrm{k} d &\mapsto& a - \mathrm{i} b - \mathrm{j} c - \mathrm{k} d } \phantom{AAAAAA} for\;\; a, b, c, d \in \mathbb{R} \,.

For an unrelated (or vaguely related) notion with a similar name see at conjugacy class and adjoint action.

Last revised on August 21, 2024 at 02:05:06. See the history of this page for a list of all contributions to it.