physics, mathematical physics, philosophy of physics
theory (physics), model (physics)
experiment, measurement, computable physics
Axiomatizations
Tools
Structural phenomena
Types of quantum field thories
(…)
See most references on electromagnetism, e.g. the article
G. Russakoff, A Derivation of the Macroscopic Maxwell Equations, American Journal of Physics 38 (1970) 1188–1195 [doi:10.1119/1.1976000]
O. L. de Lange, R. E. Raab Surprises in the multipole description of macroscopic electrodynamics, American Journal of Physics 74 (2006) 301–312 [doi:10.1119/1.2151213]
or these textbook accounts:
Lev Landau, Evgeny Lifshitz, Chapter II of: Electrodynamics of Continuous Media, volume 8 of: Course of Theoretical Physics, Pergamon Press (1960, 1984) [ISBN:9780750626347, archive, pdf]
Sophocles J. Orfanidis, Section 1 of: Electromagnetic Waves and Antennas (1999-2016) [web, pdf]
Walter Greiner, Part II of: Classical Electrodynamics, Springer (1998) [doi:10.1007/978-1-4612-0587-6]
See also
The “constitutive equations” are referred to as the “material-affinor” in:
The actual terminology “constitutive relation” appears in
and constitutive map in:
On the expression of classical electromagnetism, and especially of Maxwell's equations, in terms of differential forms, the de Rham differential and Hodge star operators:
Élie Cartan, §80 in: Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite), Annales scientifiques de l’É.N.S. 3e série, tome 41 (1924) 1-25 numdam:ASENS_1924_3_41__1_0
(already in pregeometric form)
Charles Misner, Kip Thorne, John Wheeler, §3.4 and §4.3 in: Gravitation, W. H. Freeman, San Francisco (1973) ISBN:9780716703440
Theodore Frankel, Maxwell’s equations, The American Mathematical Monthly 81 4 (1974) pdf, JSTOR
Walter Thirring, vol 2 §1.3 in: A Course in Mathematical Physics – 1 Classical Dynamical Systems and 2 Classical Field Theory, Springer (1978, 1992) doi:10.1007/978-1-4684-0517-0
Theodore Frankel, §3.5 & §7.2b in: The Geometry of Physics - An Introduction, Cambridge University Press (1997, 2004, 2012) doi:10.1017/CBO9781139061377
Gregory L. Naber, §2.2 in: Topology, Geometry and Gauge fields – Interactions, Applied Mathematical Sciences 141 (2011) doi:10.1007/978-1-4419-7895-0
Masao Kitano, Reformulation of Electromagnetism with Differential Forms, Chapter 2 in: Trends in Electromagnetism – From fundamentals to applications, InTech (2012) 21-44 ISBN:978-953-51-0267-0, pdf
Sébastien Fumeron, Bertrand Berche, Fernando Moraes, Improving student understanding of electrodynamics: the case for differential forms, American Journal of Physics 88 (2020) 1083 arXiv:2009.10356, doi:10.1119/10.0001754
Last revised on June 16, 2023 at 14:31:49. See the history of this page for a list of all contributions to it.