synthetic differential geometry
Introductions
from point-set topology to differentiable manifolds
geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry
Differentials
Tangency
The magic algebraic facts
Theorems
Axiomatics
(shape modality $\dashv$ flat modality $\dashv$ sharp modality)
$(\esh \dashv \flat \dashv \sharp )$
dR-shape modality$\dashv$ dR-flat modality
$\esh_{dR} \dashv \flat_{dR}$
(reduction modality $\dashv$ infinitesimal shape modality $\dashv$ infinitesimal flat modality)
$(\Re \dashv \Im \dashv \&)$
fermionic modality$\dashv$ bosonic modality $\dashv$ rheonomy modality
$(\rightrightarrows \dashv \rightsquigarrow \dashv Rh)$
Models
Models for Smooth Infinitesimal Analysis
smooth algebra ($C^\infty$-ring)
differential equations, variational calculus
Chern-Weil theory, ∞-Chern-Weil theory
Cartan geometry (super, higher)
In differential geometry the de Rham differential is the differential in the de Rham complex, “exterior derivative” acting on differential forms.
Let $\mathbf{H}$ be a cohesive (∞,1)-topos and write $T \mathbf{H}$ for its tangent cohesive (∞,1)-topos.
Given a stable homotopy type $\hat E \in Stab(\mathbf{H})\hookrightarrow T \mathbf{H}$ cohesion provides two objects
which may be interpreted as de Rham complexes with coefficients in $\Pi(\flat_{dR} \Sigma \hat E)$, the first one restricted to negative degree, the second to non-negative degree. Moreover, there is a canonical map
which interprets as the de Rham differential $\mathbf{d}$. See at differential cohomology diagram for details.
Last revised on May 3, 2023 at 05:00:03. See the history of this page for a list of all contributions to it.