nLab
octahedron

Contents

Idea

One of the Platonic solids

In the ADE patter

ADE classification

Dynkin diagram via
McKay correspondence
Platonic solidfinite subgroups of SO(3)finite subgroups of SU(2)simple Lie group
A nA_ncyclic group
n+1\mathbb{Z}_{n+1}
cyclic group
n+1\mathbb{Z}_{n+1}
special unitary group
D n+4D_{n+4}dihedron,
hosohedron
dihedral group
D n+2D_{n+2}
binary dihedral group
2D n+22 D_{n+2}
special orthogonal group
E 6E_6tetrahedrontetrahedral group
TT
binary tetrahedral group
2T2T
E6
E 7E_7cube,
octahedron
octahedral group
OO
binary octahedral group
2O2O
E7
E 8E_8dodecahedron,
icosahedron
icosahedral group
II
binary icosahedral group
2I2I
E8

References

  • Felix Klein, chapter I.7 of Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, 1884, translated as Lectures on the Icosahedron and the Resolution of Equations of Degree Five by George Morrice 1888, online version

  • Wikipedia, Octahedron

Last revised on April 16, 2018 at 02:08:24. See the history of this page for a list of all contributions to it.